
1

Dealing Cards in Poker Games
Philippe Golle

Palo Alto Research Center
pgolle@parc.com

Abstract— This paper proposes a new protocol for shuffling
and dealing cards, that is designed specifically for games of
mental poker. Our protocol takes advantage of two features
of poker games that are overlooked by generic card-shuffling
protocols: 1) cards in poker games are dealt in rounds, with
betting in-between, rather than all at once and 2) the total
number of cards dealt in a game of poker is small (it depends on
the number of players but is typically less than half the deck).
With these observations in mind, we propose a protocol that
spreads the computational cost of dealing cards more evenly
across rounds. Compared to protocols that shuffle the whole
deck upfront, our approach offers a dramatic decrease in latency
and overall computational cost. Our protocol is fair, private and
robust. It is ideally suited for resource-constrained devices such
as PDAs.

Index Terms— Shuffle, Mental Poker, Mix, Latency, ElGamal.

I. INTRODUCTION

Mental, or electronic, card games require protocols for shuf-
fling a deck of cards and for dealing cards to players in a way
that is private: players must learn no information about cards
dealt face down to other players. In the abstract, this problem
is well studied. Various protocols [16], [12] let a number of
players jointly compute a permutation of n elements, in a way
that is private and very efficient asymptotically. These generic
protocols can naturally be used to shuffle a deck of 52 cards,
and deal, for example, a game of poker. However, generic
protocols are not designed specifically for real card games,
and thus offer far from optimal computational efficiency and
latency in actual games.

This paper proposes a new protocol for shuffling and dealing
cards, that is designed specifically for games of mental poker.
Our protocol takes advantage of two features of poker games
that are overlooked by generic card-shuffling protocols: 1)
cards in poker games are dealt in rounds, with betting in-
between, rather than all at once and 2) the total number of
cards dealt in a game of poker is small (it depends on the
number of players but is typically less than half the deck). With
these observations in mind, we propose a protocol that spreads
the computational cost of shuffling and dealing cards more
evenly across rounds. Compared to protocols that shuffle the
whole deck upfront, our approach offers a dramatic decrease
in latency and overall computational cost.

For example, the total computational cost of shuffling and
dealing cards for one game of “Texas Hold’em” among 5
players is 66% lower with our protocol than with the most
efficient generic protocol [12]. More importantly, the initial
setup latency (before the first round of betting) is 85% lower.
Our protocol offers similar improvements for “Seven Card
Stud” and other popular poker games [1].

Our approach to dealing cards is conceptually very simple.
Unlike generic protocols, we do not shuffle the whole deck of
cards in a time-consuming initial step. Rather, we generate
cards one by one when they are needed. Let the interval
[1, . . . , 52] represent the 52 cards in a deck. To generate a card,
the players jointly compute the encryption E(c) of a random
number c ∈ [1, . . . , 52]. The players then compare the cipher-
text E(c) with all the (encrypted) cards E(c1), . . . , E(ct) that
have already been dealt in the current game. If a match is
found, the newly generated card E(c) is discarded and the
players try again generating a card. If no match is found, the
card E(c) is a valid new card. To deal face up, the players
jointly decrypt the card and output c. To deal face down, the
players help the recipient of the card decrypt, in such a way
that only the recipient learns c.

This protocol is extremely efficient when the total number
of cards dealt in a game is small compared to the number of
cards in the deck (nearly all poker games have that property).
Is is, however, unsuitable for dealing a whole deck of cards.
Furthermore, the computational cost of dealing cards is not all
incurred upfront, but rather it is spread across multiple rounds
of betting, thus offering players much reduced upfront latency.
As will be clear in the rest of this paper, the protocol is
private. No player or coalition of players (below a threshold)
can influence the card generation protocol, nor learn anything
about any of the cards dealt face down to other players. Our
protocol is ideally suited for resource-constrained devices
such as PDAs or even next-generation cell phones.

Overview. In the rest of this section, we introduce our model
and survey briefly known approaches to dealing cards. In
Section II, we give a high-level description of our protocol.
We discuss specific implementations of our protocol with an
RSA-based encryption scheme (Section III) and with ElGamal
(Section IV). In Section V, we discuss the efficiency of our
protocol for specific games and offer detailed evidence that it
is superior to generic mixing protocols.

A. Model

Games of mental poker require the ability to shuffle a
deck of cards, and to deal cards either face up or face down
(other requirements of online poker, such as the ability to
transfer payments between players, are outside the scope of
this paper). Note that the shuffling operation may be implicit:
in our protocol, shuffling and dealing occur concurrently. The
properties desired of mental poker with respect to shuffling
and dealing cards are exactly derived from the properties
of “real” poker games. Specifically, a player or coalition of

2

players should not be able to influence shuffling in any way,
nor learn anything about a card dealt face down to anyone
outside the coalition.

Adversarial model. Let k be the number of players. We
assume that the adversary can actively corrupt up to a minority
of players, and passively corrupt up to k−1 players. Note that
this is the strongest possible adversarial model. We desire the
following properties of our protocol:

• Correctness. Every card dealt, whether face up or face
down, whether to the adversary or not, should be drawn
uniformly at random from the set of cards left in the deck.

• Privacy. The adversary learns no information about cards
dealt face down to players that the adversary does not
control.

• Robustness. We need not worry about one player drop-
ping out (after all, a player is allowed to fold), but we
must prevent one player from preventing the others from
continuing a round.

Poker is usually played with a standard 4-suit 52-card deck,
but a joker or other wild cards may be added. In what follows,
we assume that a deck of cards consists of exactly 52 cards,
but it will be clear that our protocols can easily be modified
to accommodate larger (or smaller) decks. We represent the
cards in the deck with the set of integers modulo 52, i.e. the
set {0, . . . , 51}.

Efficiency. There are many ways to measure the efficiency
of a protocol: round complexity, communication cost, com-
putational cost, etc. For card dealing protocols, computational
costs dwarf all other costs. This paper thus focuses exclusively
on computational cost, which we measure as the number of
modular exponentiations that each player must perform.

B. Related Work

In this section, we review briefly generic approaches to
shuffling a deck of cards.

Trusted Third Party. A Trusted Third Party (TTP) is a
party trusted by all players to mix and deal cards fairly. For
example, an online casino acts as a TTP for the players that
are registered with it. A TTP is a simple and efficient solution
to dealing cards, but it constitutes a single point of failure
and offers very weak security. For example, a malicious TTP
may collude with some players against others. Even an honest
TTP may not mix properly (see [2] for an example of an
off-by-one error in a shuffling algorithm). These weaknesses
disqualify TTP-based approaches from serious consideration.

Distributing trust. The first scheme to successfully distribute
trust among all players is due to Crépeau [8]. As long as a
majority of players are honest, all players are assured that
cards are dealt fairly and privately. The computational cost of
this scheme is unfortunately prohibitively high. In 1994, an
implementation of [8] on three Sparc workstations is reported
to have taken eight hours to shuffle a deck of cards [9].

Mix network. Efficient schemes [14], [3] for dealing cards
without a TTP all rely on a primitive known as a mix server. A
mix server [6], [16] takes a set of input ciphertexts and outputs
equivalent ciphertexts (i.e. ciphertexts that decrypt to the same
plaintexts), in a randomly permuted order. The permutation
that matches input to output ciphertexts is known only to the
mix server. A verifiable mix server also outputs a proof of
correct mixing that allows a verifier to check that the mixing
operation was done correctly.

To shuffle cards, the players first jointly encrypt the deck
of cards. Each player then acts as a mix server and mixes
the cards according to a secret permutation. The result of this
operation is a shuffled deck of cards, from which cards can
be dealt one by one.

To mix a deck of 52 cards, the most efficient verifiable mix
network is a construction called Millimix [12] that relies on
a permutation network. To mix 52 cards, we need d = 321
comparitors. The following table shows the real cost per player
(for a total of k players) of mixing 52 cards with Millimix.
The cost is measured in terms of the number of modular
exponentiations.

Operation Cost k = 5
Deck setup (total) (3k+4)d 6099

Mixing and proof 7d 2247
Verifying others’ proofs 3d(k − 1) 3852

Dealing a card (total) 4 + 2k 14
Decryption and proof 6 6
Verifying others’ proofs 2(k − 1) 8

As this table illustrates, the main drawback of mix networks is
that the whole computational cost of shuffling is borne upfront,
resulting in very high latency before a game begins.

II. PROTOCOL OVERVIEW

In this section, we give an overview of our protocol. To
deal a card, the players jointly generate a semantically secure
encryption E(c) of a random integer c ∈ {0, . . . , 51} without
revealing c. To avoid dealing the same card twice, the players
must ensure that the newly generated card E(c) is different
from all the cards already dealt. The difficulty is that this
comparison must be made between encrypted cards, in a way
that reveals only whether E(c) has already been dealt. If E(c)
was already dealt, the players repeat the protocol and try a new
card E(c′) until one is found that has not already been dealt.

A complete description of the protocol follows. The protocol
requires a semantically secure public-key encryption scheme
E with the following properties:

• The key generation and decryption algorithms for E can
be distributed among k players.

• E is additively homomorphic, i.e. E(m1)E(m2) =
E(m1 + m2).

• Given two ciphertexts E(c) and E(c′), there is a protocol
that allows the joint holders of the private key to learn
whether c = c′ mod 52 without revealing anything else.

We discuss encryption schemes with these properties in
Sections III and IV. Given an encryption scheme E with the
properties above, the protocol for dealing cards is as follows.

3

Group establishment. The players jointly generate and share
the public and private parameters of the encryption scheme
E. Every player receives the public parameters and a share of
the private key. After a group is established, the same public
and private parameters can be reused to deal multiple decks
of cards. The group establishment protocol only needs to be
run again if a player leaves, a new player joins, or a new
group is formed.

Deck setup. The players keep a list L = {E(c1), . . . , E(ct)}
that consists of encryptions of all the cards that have been
dealt from the current deck. The list L includes both the
cards dealt face up and the cards dealt face down. When a
new deck is setup, we initialize L = ∅.

Dealing a card. The protocol to deal a card, whether face up
or face down, is as follows:

1) Every player Pi chooses ri
R← {0, . . . , 51}, computes

the ciphertext E(ri) and outputs a non-malleable com-
mitment to E(ri).

2) Each player Pi then reveals E(ri), and all players
verify that all commitments are correct. If one or more
commitments are incorrect, the protocol aborts and the
honest players establish a new group that excludes the
dishonest players.

3) Using the additive homomorphism of E, the players
compute E(c), where c =

∑
i ri.

4) If L �= ∅, the players must test whether the card
E(c) already belongs to L. More precisely, for every
ciphertext E(c′) ∈ L, the players run the joint protocol
to test whether c = c′ mod 52. If there exists E(c′) ∈ L
such that c = c′ mod 52, the players discard the card
E(c) and restart the card dealing protocol in step 1. Note
that the card E(c′) that had already been dealt earlier is
unaffected by the collision.

5) The players add E(c) to the list L. To deal the card
face up, the players jointly decrypt E(c) and output c
mod 52. To deal the card face down to player Pj , all
players other than Pj partially decrypt E(c) under their
share of the private key. The resulting ciphertext can be
decrypted by Pj alone.

In the rest of this paper, we present two encryption
schemes with the required properties, and examine for both
the computational cost of establishing a group, setting up a
deck and dealing a card.

Expected number of collisions to deal a cards. The expected
total number of collisions to deal a cards is approximately
1
52

(a(a−1)
2

)
as long as a� 52.

III. DENSE PROBABILISTIC ENCRYPTION

Dense probabilistic encryption is a semantically secure
public-key encryption scheme proposed by Benaloh [4]. This
encryption scheme satisfies 2 of the 3 properties we require:
it is additively homomorphic and allows for modular plaintext
comparison, but unfortunately it has no efficient algorithm

for distributed key generation (as discussed below, we must
therefore rely on a trusted third party for key generation).

Dense probabilistic encryption has an additive homomor-
phism modulo r, where r is an odd integer that parameterizes
the encryption function. For our application, we set r =
53 and thus obtain an encryption scheme with an additive
homomorphism modulo 53 (rather than 52). This discrepancy
is easy to deal with: the players add a 53rd special card to the
standard 52-card deck. This special 53rd card is added to the
list L during deck setup to ensure it is never dealt.

We review briefly the Benaloh encryption scheme below
(see [4] for details).

Key Generation. Let r be an odd integer (in our application
r = 53). Let p, q be two large primes such that r divides p−1,
gcd(r, (p− 1)/r) = 1 and gcd(r, q− 1) = r. Let N = pq. Let
y ∈ Z

∗
N such that y(p−1)(q−1)/r �= 1 mod N . The public key

consists of N and y, and the private key is d = (p−1)(q−1)/r.

Distributed Key Generation. Existing protocols [5], [11] for
distributed RSA-key generation can be adapted to distributed
key generation for dense probabilistic encryption, but these
protocols are too inefficient for practical use. In practice, we
must rely on a trusted third party to compute N and y as
above, and distribute additive shares of d = (p− 1)(q − 1)/r
to the players. Note that this trusted third party plays a very
limited role: its involvement is limited to key generation
and it is never used again afterward. Such a limited third
party that helps establish groups of players may be acceptable.

Encryption. To encrypt m ∈ Zr, choose u
R← Z

∗
N and let

E(m) = ymur.

Decryption. Consider a ciphertext z = E(m) = ymur. Recall
that d = (p − 1)(q − 1)/r. We have zd = ymd. We build a
look-up table of the values yd for m ∈ {0, . . . , r − 1}, and
decrypt a ciphertext z by looking up the value zd in the table.

Additive homomorphism modulo r. Let m1,m2 ∈ Zr, and
let z1 = E(m1) and z2 = E(m2). It is easy to verify that
z1z2 = E(m1 + m2).

Test of plaintext equality modulo r. Let E(m1) and E(m2)
be two ciphertexts. The goal is to determine whether m1 = m2

mod r without revealing any other information. The players
first compute E(m1)/E(m2) = E(m), where m = m1 −m2

mod r. The problem is to determine whether m = 0 mod r.
Each player Pi in turn chooses αi

R← {1, . . . , 52} and out-
puts E(m)αi together with a proof of correct exponentiation
(essentially a non-interactive Schnorr signature [18]). Let
α =

∑
i αi. The players compute

∏
i E(m)αi = E(m)α.

Note that E(m)α = ymαurα and therefore E(m)α is an
encryption of mα mod r. Furthermore, since r = 53 is
prime in our application, mα = 0 mod r if and only if
m = 0 mod r. Otherwise, for m �= 0 mod r, the value mα
is uniformly distributed over {1, . . . , 52}. The players jointly
decrypt E(m)α and output m1 = m2 mod r if and only if
mα = 0 mod r.

4

The computational cost of this protocol is given in the
following table, expressed as the number of modular expo-
nentiations per player:

Operation Cost
Deck setup 2
Test of plaintext equality 4k
Dealing a card 4k|L|/(1− |L|/52)

Other encryption schemes offer semantically secure dense
probabilistic encryption, such as a scheme by Naccache and
Stern [15], but these schemes are also based on an RSA mod-
ulus for which there is no efficient distributed key generation
algorithm.

IV. ELGAMAL IMPLEMENTATION

In this section, we propose an implementation of our
protocol for dealing cards that is based on the ElGamal
encryption scheme [10]. The ElGamal implementation is less
efficient than the implementation described in the previous
section, but it offers the significant advantage of efficient
distributed key generation without relying on a trusted third
party. Recall that we let k denote the number of players. We
review first the definition and useful properties of ElGamal.

Key generation. Let p be a 1024-bit prime and q be a
160-bit prime such that q|(p − 1). Let g ∈ Z

∗
p be an element

of order q, and let G be the multiplicative subgroup of Z∗
p

generated by g. The parameters p, q and g are public. Let
x ∈ Z

∗
q be a private key and y = gx the corresponding

public key. ElGamal is semantically secure if the Decisional
Diffie-Hellman (DDH) assumption holds in the group G.

Distributed key generation. Pedersen’s protocol [17] lets a
number of players generate an ElGamal public/private key
pair in distributed fashion. At the end of the protocol, all
players learn the public key. Each player learns a share xi of
the private key x such that

∑k
i=1 xi = x mod q.

Encryption/decryption. To encrypt m ∈ G, choose r
R← Z

∗
q

and let E(m) = (gr,myr). To decrypt a ciphertext (a, b),
compute b/ax = m. When the private key is shared among k
players, the value ax is computed jointly as ax =

∏k
i=1 axi .

Proof of correct encryption. This protocol allows a prover
to convince a verifier that an ElGamal ciphertext E (created
by the prover) is an encryption of a message m. The prover
simply outputs m and the randomness r used to create the
ciphertext E. The verifier checks that E = (gr,myr).

Proof of Discrete Log equality. The Chaum-Pedersen
protocol [7] lets a prover convince a verifier that a quadruplet
(g, y, a, b) satisfies the equation logg(y) = loga(b). Note that
this protocol also proves correct decryption.

Multiplicative homomorphism. Let m1,m2 ∈ G, and let
(a1, b1) and (a2, b2) be the ElGamal encryptions of m1 and
m2. It is easy to verify that (a1a2, b1b2) is an ElGamal
encryption of m1m2.

Oblivious test of plaintext equality. Let E(m1) and E(m2)
be two ElGamal ciphertexts. A protocol of Jakobsson and
Schnorr [13] lets the joint holders of the decryption key
determine whether m1 = m2 without revealing any other
information (hence the name oblivious). Using ElGamal’s
multiplicative homomorphism, the problem is equivalent to
testing whether an ElGamal ciphertext (a, b) is an encryption
of 1, i.e. whether logg(y) = loga(b). Note that the Chaum-
Pedersen protocol described above can not be used here
because it leaks information when logg(y) �= loga(b).

Disjunctive Proof of equality of plaintext (DISPEP).
A prover is given two ElGamal ciphertexts E1 and E2.
The DISPEP protocol [12] allows a prover to convince a
verifier that an ElGamal ciphertext E is a re-encryption of
either E1 or E2 without revealing which one. We refer the
interested reader to [12] for a description of DISPEP .

Proving subset membership. Let E be an ElGamal cipher-
text. The following protocol lets a prover (who knows the
plaintext) convince a verifier that E is an encryption of a value
in the set

{
g0, . . . , g51

}
, without revealing which value.

• Let T1 =
{
g0, g26

}
, T2 =

{
g0, g13

}
, T3 =

{
g0, g6

}
,

T4 =
{
g0, g3

}
, T5 =

{
g0, g2

}
, T6 =

{
g0, g1

}
(We

assume that the sets T1, . . . , T6 have been precomputed).
The prover outputs 6 ciphertexts C1, . . . , C6 and proves
with DISPEP that Ci ∈ Ti for i = 1, . . . , 6.

• The verifier decrypts
∏

Ci/E and verifies that the plain-
text is 1.

Note that a very simple variant of this protocol allows a
prover to convince a verifier that an ElGamal ciphertext E
is an encryption of a value in the set

{
g0, g52, . . . , g52(k−1)

}
,

without revealing which value.

Primitive Cost
Encryption, re-encryption 2
Proof of DLog/decryption

Prover 2
Verifier 4

Oblivious plaintext equality test 8k − 1
DISPEP

Prover 9
Verifier 4

Proving subset membership
Prover 64 + 4k
Verifier 22 + 4k

In the table above and those that follow, recall that all costs
are expressed as the number of modular exponentiations per
player.

A. Group Establishment

While ElGamal’s homomorphism would at first appear
poorly suited to our application, we show how to make
efficient use of it. Compared to dense probabilistic encryption,
ElGamal offers the advantage of a simple distributed key
generation algorithm.

5

Group establishment:
• The players use Pedersen’s protocol [17] to generate a

distributed ElGamal public/private key pair.
• Every pair or players (Pi, Pj) establishes a secret key

ki,j for a symmetric cipher such as DES or AES. These
keys allow any two players to communicate privately.

• The players precompute and store in memory the values
g0, g1, . . . , g51 ∈ G. These values encode the 52 cards.

• Recall that we let k denote the number of players. The
players precompute and store in memory the following
k − 1 ElGamal ciphertexts: Di = E(g52i) for i =
0, . . . , k − 1. Let S = {D0, . . . , Dk−1}.

Group establishment Cost
Pedersen protocol 2k
Generate secret keys 2(k − 1)
Precompute cards ≈ 0
Precompute the set S 2k
Total ≈ 6k

B. Dealing the First Round

In our ElGamal implementation, cards in the first round
are dealt differently from cards in subsequent rounds. We
describe first how to deal the first round of cards. These cards
are dealt either face up or face down, either to a player or in
the middle of the table, as follows.

Generating a card:

1) Every player Pi chooses ri
R← {0, . . . , 51}, computes

the ciphertext Ci = E(gri) and outputs a non-malleable
commitment to Ci. Note that a malicious player may
choose ri �∈ {0, . . . , 51}. It will be clear that such
cheating is of no consequence.

2) Each player Pi reveals Ci, and all players verify that all
commitments are correct. If one or more commitments
are incorrect, the protocol aborts and honest players es-
tablish a new group that excludes the dishonest players.

3) Using ElGamal’s homomorphism, the players compute
E(

∏
i gri) = E(gc), where c =

∑
i ri mod q. Note

that if all players behave honestly, c ∈ {0, . . . , 51k}.
Dealing a card face up (visible to everyone): Every player
reveals ri and the randomness used in generating E(gri).
The players verify that all ri ∈ {0, . . . , 51} and that the
encryptions are correct. If one or more players cheated, the
protocol aborts and the honest players establish a new group
that excludes the dishonest players. If all players were honest,
the card dealt face up is

∑
i ri mod 52.

Dealing a card face down to player Pj: Every player reveals
only to player Pj the value ri and the randomness used in
generating E(gri) (the pairwise symmetric encryption keys set
up during group establishment permit private communication
between players). Player Pj verifies that all ri ∈ {0, . . . , 51}
and that the encryptions are correct. If one or more players
cheated, the protocol aborts and the honest players establish a
new group that excludes the dishonest players. If all players
were honest, the card dealt face down to Pj is

∑
i ri mod 52.

Reducing cards dealt face down modulo 52. Assume that
player Pj has received the ciphertexts E(gri) for i = 1, . . . , k.
Let c ∈ {0, . . . , 51} such that c =

∑k
i=1 ri mod 52. Player

Pj outputs the ciphertext E(gc). Player Pj must also output a
proof that the value c has been correctly reduced modulo 52.
The proof proceeds as follows:

• Pj proves that E(gc) is an ElGamal encryption of a value
in the set

{
g0, . . . , g51

}
. To do so, Pj uses the protocol

to prove subset membership (described earlier).
• Pj proves that E

(
g

∑
i ri

)
/E(gc) is an encryption of a

value in the set
{
g0, g52, . . . , g52(k−1)

}
. To do so, the

player uses the variant of the protocol to prove subset
membership.

Testing for “collisions” (cards dealt more than once).
Collisions between cards dealt face up are trivial for anyone
to detect. For collisions between one card dealt face up and
one card dealt face down, or between two cards dealt face
down, we use an oblivious test of plaintext equality (note that
this works because all cards have been reduced modulo 52).
If collisions are found, the colliding cards are discarded and
new cards dealt in their place until there are no collisions.

A note on cheating. A malicious player (or several malicious
players) may contribute a value ri �∈ {0, . . . , 51} for a card
generated for an accomplice. If the accomplice fails to report
that the value ri is incorrect, this cheating goes undetected.
However, this cheating is of no consequence: in particular, the
card received by the accomplice remains exactly uniformly
distributed.

Operation Cost
Generating a card 2
Dealing a card face up/down ≈ 0
Receiving a card face up/down 2(k − 1)
Reducing a card face down

Prover < 2(64 + 4k)
Verifier < 2(22 + 4k)

Testing for one collision 8k − 1

C. Dealing Following Rounds

Subsequent rounds differ from the first round in that
collisions must be detected (at greater cost) before cards are
ever dealt. Consider the following difference. When a collision
between cards occurs in the first round, it is acceptable to
discard both cards and start over. By contrast, it is no longer
acceptable to eliminate both cards involved in a collision
after the first round, since one of the cards involved in the
collision may have been dealt to a player in a previous round
and cannot be discarded without impacting that player’s game.

Generating a card: Same as in the first round.

Mixing the set S: The players mix the set S =
{D0, . . . , Dk−1}, using e.g. Millimix [12]. The cost of
k players mixing t inputs with Millimix is (3k + 4)f(t)
where f(t), the number of comparitors, is given by
f(t) = t�log(t)�− t+1 (see [12]). Note that here, Millimix is

6

used to mix a set of size k � 52 (in games of poker, typically
k ≤ 6) and thus this mixing operation is considerably faster
than directly mixing the deck of 52 cards.

Testing for “collisions” (cards dealt more than once). If
L �= ∅, the players must test whether the newly generated
card E(gc) already belongs to L. More precisely, for every
ciphertext E(gc′) ∈ L, the players must determine whether
c = c′ mod 52. This is done as follows:

1) Using ElGamal’s homomorphism, the players compute
E(gc/gc′) = E(gc−c′).

2) Using the oblivious test of plaintext equality, the players
compare E(gc−c′) with every ciphertext in S. If a match
is found, the protocol aborts (the card c has already been
dealt). In that case, the players start over and generate
a new card as above (the set S must be mixed again).

If no equality is found, i.e. for all E(gc′) ∈ L, we have
E(gc−c′) �∈ S, then the card c has not yet been dealt in the
current game.

Dealing a card: After ensuring there are no collisions, cards
are dealt face up or down as in the first round (as in the first
round, cards dealt face up need not be reduced).

V. GAMES

We consider the following games. Each game is played with
a deck of 52 cards. Note that we are concerned only with the
distribution of cards (and rounds of betting insofar as it may
influence the number of rounds of communication).

• Texas Hold’em: Initially, two cards are dealt face down
to each player, then there is a betting round. Three
“community” cards are then dealt face up in the center
of the table. Another betting round occurs. Another card
is dealt face up in the center, followed by another betting
round. Then a final card is dealt face up in the center,
followed by a final betting round.

• Seven Card Stud: each player is dealt 7 cards, starting
with two cards face down and one card face up. Three
more cards are dealt to each player face up, with betting
rounds in between. Then a final card is dealt face down,
followed by a final betting round.

The following table shows the expected total real cost of
a game with k players, measured in terms of the number
of exponentiations that each player must perform. The first
column shows the cost of a mixnet solution with Millimix
(described in related work in Section I-B). The second column
shows the cost of our protocol implemented with Dense
Probabilistic Encryption or DPE (see Section III). Finally, the
third column shows the cost of our protocol implemented with
ElGamal (see Section IV). The costs are given for a game of
Texas Hold’em with respectively 3 and 5 players. Very similar
results are obtained for Seven Card Stud.

The DPE implementation of our protocol is by far the most
efficient, but it relies on a trusted third party for initial key
establishment (this may be acceptable since the trusted third
party is used only once to set up a group). Our protocol
implemented with ElGamal (for which no trusted third party

is ever needed) offers smaller but still substantial savings
compared to generic shuffling techniques based on mixnets.
Furthermore, the computational cost is distributed more evenly
across the game.

Scheme Millimix DPE ElGamal
Texas Hold’em (3 players)

Deck setup & 1st round 4233 201 ≈ 800
Additional rounds (Max) 30 298 ≈ 660

Texas Hold’em (5 players)
Deck setup & 1st round 6239 1088 ≈ 1700
Additional rounds (Max) 42 858 ≈ 2900

VI. CONCLUSION

We have proposed a new protocol for shuffling and deal-
ing cards, that is designed specifically for games of mental
poker. Compared to generic protocols for shuffling cards, our
approach offers a dramatic decrease in latency and overall
computational cost. Our protocol is ideally suited for resource-
constrained devices. We described our protocol for games of
Poker but simple variations could be designed for Blackjack
and other games.

REFERENCES

[1] Rules of poker. http://www.gambling-poker.com/.
[2] B. Arkin, F. Hill, S. Marks, M. Schmid, T. J. Walls, and G. Mc-

Graw. How we learned to cheat at online poker: A study in software
security. http://www.developer.com/tech/article.php/
10923_616221_1.

[3] A. Barnett and N. Smart. Mental poker revisited. In Proceedings of
Cryptography and Coding, pages 370–383, 2003.

[4] J. Benaloh. Dense probabilistic encryption. In Proceedings of the
Workshop on Selected Areas in Cryptography 1994, pages 120–128.

[5] D. Boneh and M. Franklin. Efficient key generation of shared RSA
keys. In Proceedings of Crypto ’97, pages 425–439.

[6] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–88, Feb 1981.

[7] D. Chaum and T. Pedersen. Zero-knowledge undeniable signatures. In
Proceedings of Eurocrypt ’90, volume 740 of LNCS, pages 89–105.

[8] C. Crépeau. A zero-knowledge poker protocol that achieves confiden-
tiality of the players’ strategy or how to achieve an electronic poker face.
In Proceedings of Crypto ’86, volume 263 of LNCS, pages 239–247.

[9] J. Edwards. Implementing electronic poker: A practical exercise in zero-
knowledge interactive proofs. Master’s thesis, Department of Computer
Science, University of Kentucky, 1994.

[10] T. ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory,
31(4):469–472, Jul 1985.

[11] Y. Frankel, P. MacKenzie, and M. Yung. Robust efficient distributed
RSA-key generation. In Proceedings of the thirtieth annual ACM
Symposium on Theory of Computing, pages 663–672.

[12] M. Jakobsson and A. Juels. Millimix: Mixing in small batches, 1999.
DIMACS Technical Report 99-33.

[13] M. Jakobsson and C. Schnorr. Efficient oblivious proofs of correct
exponentiation. In Proceedings of Communications and Multimedia
Security, pages 71–86, 1999.

[14] K. Kurosawa, Y. Katayama, W. Ogata, and S. Tsujii. General public
key residue cryptosystems and mental poker protocols. In Proceedings
of Eurocrypt 1990, volume 473 of LNCS, pages 374–388.

[15] D. Naccache and J. Stern. A new public key cryptosystem based on
higher residues. In Proceedings of the 5th ACM Symposium on Computer
and Communications Security, pages 59–66. ACM Press, Nov 1998.

[16] W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault tolerant
anonymous channel. In Information and Communications Security ’97,
volume 1334 of LNCS, pages 440–444.

[17] T. Pedersen. A threshold cryptosystem without a trusted third party. In
Proceedings of Eurocrypt ’91, volume 547 of LNCS, pages 129–140.

[18] C. P. Schnorr. Efficient signature generation for smart cards. Journal of
Cryptology, 4(3):239–252, 1991.

