
A Private Stable Matching Algorithm

Philippe Golle

Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304, USA

pgolle@parc.com

Abstract. Existing stable matching algorithms reveal the preferences of
all participants, as well as the history of matches made and broken in the
course of computing a stable match. This information leakage not only
violates the privacy of participants, but also leaves matching algorithms
vulnerable to manipulation [8, 10, 25].
To address these limitations, this paper proposes a private stable match-
ing algorithm, based on the famous algorithm of Gale and Shapley [6].
Our private algorithm is run by a number of independent parties whom
we call the Matching Authorities. As long as a majority of Matching Au-
thorities are honest, our protocol correctly outputs a stable match, and
reveals no other information than what can be learned from that match
and from the preferences of participants controlled by the adversary. The
security and privacy of our protocol are based on re-encryption mix net-
works and on an additively homomorphic semantically secure public-key
encryption scheme such as Paillier.

1 Introduction

Stable matching algorithms are best explained with the terminology of marriage
and are thus also known as stable marriage algorithms. Let us consider an equal
number n of men and women. We assume that every man ranks the n women
according to how desirable each is to him, without ties. Similarly, every woman
ranks the n men according to how desirable each is to her, without ties.

A match is a bijection between men and women, or equivalently a set of
n heterosexual monogamous marriages between the n men and the n women.
Ideally, a perfect match would pair every man with the woman he likes best and
vice versa. Clearly the preferences expressed by men and women rarely allow
for a perfect match. For example, if two men rank the same woman first, one of
them at least will have to settle for a less desirable partner.

A weaker requirement is to find a match that is, if not perfect, then at least
stable. Consider a match in which a man A is married to a woman B and a man
A′ to a woman B′. If A prefers B′ to his wife B, and B′ prefers A to her husband
A′, A and B′ both have an incentive to leave their partner and marry each other
(the match is thus unstable). A stable match is a match such that there is no
man and woman that both like each other better than their respective partners.
When a match is stable, all couples are static: a man tempted to abandon his

wife for another woman he ranks higher will be rebuffed, since that woman ranks
her partner higher than the new suitor.

A stable matching algorithm takes as inputs the preferences of men for women
and of women for men, and outputs a stable matching between them. Efficient
stable matching algorithms are well known [6] and have important real-world
applications. They are used notably to assign graduating medical students to
residency programs at hospitals in the US [15], Canada [3] and Scotland [23]: a
stable match between students and hospitals is computed automatically based
on the preferences of students for hospitals and of hospitals for students. In Nor-
way and Singapore [25], stable matching algorithms are used to assign students
to schools and universities. In fact, the use of stable matching algorithms is suffi-
ciently widespread that there exist companies dedicated solely to administering
matching programs. National Matching Services [14], for example, administers
matching programs for psychology internships in the US and Canada [1], for arti-
cling positions with law firms in Alberta (Canada) and for many others. All told,
stable matching algorithms impact the careers of tens of thousands of students
and professionals annually.

Considering the stakes involved and the sensitive nature of the preferences
expressed, stable matching algorithms should afford participants the maximum
amount of privacy possible. Ideally, the algorithm should output a stable match
without leaking any additional information. Unfortunately, existing stable match-
ing algorithms fall far short of that ideal. They take as input the complete list
of preferences of men and women (or students and hospitals), and reveal the
complete history of engagements made and broken in the process of computing
a stable match.

This information leakage violates the privacy of participants, and potentially
exposes them to embarrassment or ridicule. Consider for example that no medical
student would like it to be known that she was matched to her least favorite hos-
pital. Worse still, the public disclosure of preferences leaves matching algorithms
vulnerable to manipulation [8, 10, 25]: under certain circumstances, participants
with knowledge of the preferences of other participants have incentives to alter
their own true preference list (see Section 2 for detail).

In the absence of a better solution, these problems have up to now been
weakly mitigated by the assumption that all participants trust a third party
to receive their preference lists, run the algorithm and output a stable match
without revealing any other information. This approach requires a considerable
amount of trust in a single entity and runs counter to the security tenet that trust
should be distributed. Reliance on a single trusted third party is particularly
problematic when the third party must protect the interests of participants with
unequal power and influence. The third party is at risk of corruption by the
more powerful protocol participants (e.g. the hospitals) at the expense of the
less powerful participants (e.g. the medical students). To afford equal privacy
protection to all participants, we propose a private stable matching algorithm.

Our private stable matching algorithm is based on the famous algorithm of
Gale and Shapley [6], which we review in Section 2. The private algorithm is run

by a number of independent parties whom we call the Matching Authorities. As
long as a majority of Matching Authorities are honest, our protocol correctly
outputs a stable match, and reveals no other information than what can be
learned from that match and from the preferences of participants controlled
by the adversary. The security and privacy of our protocol are based on re-
encryption mix networks and on an additively homomorphic semantically secure
public-key encryption scheme such as Paillier.

1.1 Financial Applications of Stable Matching Algorithms

The stable matching problem describes a two-sided, one-to-one matching market.
The most famous examples of such markets are college admissions and entry-
level labor markets. But examples of two-sided markets go far beyond labor
markets [20, 21]. Among others examples, two-sided markets have been used to
model the matching of venture capitalists and companies in capital markets [24]
and the matching of suppliers and consumers in supply chain networks [17]. Aside
from matching markets, the use of stable matching algorithms has recently been
proposed to determine stable winner allocations in certain types of multi-unit or
combinatorial auctions [2].

2 Gale-Shapley Stable Matching Algorithm

There exist several formulations of the stable matching problem, all closely re-
lated. In this section and the rest of the paper, we consider a model of one-to-one
matchings (i.e. no polygamy), with complete preference lists (i.e every man ranks
all women and every woman ranks all men). The results of this paper can eas-
ily be adapted to other models. For example, the many-to-one model (in which
one hospital has internship slots for multiple students) reduces to the one-to-one
model by cloning an appropriate number of times the participants who accept
multiple partners.

We review the famous stable matching algorithm of Gale and Shapley [6].
In this algorithm, men and women play different roles. Arbitrarily, we present a
matching algorithm in which men propose to women (these roles can naturally
be reversed). The algorithm takes as input the lists of preferences of men and
women. Throughout the algorithm, men and women are divided into two groups:
those that are engaged, and those that are free (i.e. not yet or no longer engaged).
Initially, all men and all women are free.

As long as the group of free men is non-empty, the algorithm selects at
random one man A from the group of free men. Man A proposes to the woman
whom he ranks highest among the women to whom he has never proposed before
(let’s call this woman B). One of three things may happen:

– B is free. In this case, A and B are engaged to each other and both move to
the engaged group.

– B is already engaged to A′ and ranks A ahead of A′. In this case, B breaks
her engagement to A′ and instead gets engaged to A. A and B join the
engaged group, whereas A′ goes back to the group of free men.

– B is already engaged to A′ and ranks A′ ahead of A. In this case, B stays
engaged to A′ and A stays in the group of free men.

Properties and limitations. Let n denote the number of men and women.
The algorithm terminates in at most n2 steps and outputs a match that is stable
(see [6] for more detail). This “men-propose” algorithm is men-optimal [19]: the
optimal strategy for men is to reveal their true preference lists, as long as all other
participants also reveal their true preferences. Women on the other hand have
incentives to falsify their preferences [25] in men-propose algorithms, assuming
they have full knowledge of the preference lists of all participants. This attack
is of real practical concern. In fact, the Gale-Shapley algorithm gives women
all the knowledge they need to manipulate the algorithm, since it exposes the
complete preference lists of men and women, together with the entire history of
engagements made and broken.

Private Gale-Shapley with Secure Multiparty Computation. Generic
secure multiparty computation techniques [26, 9] allow n men and n women to
compute privately the outcome of the Gale-Shapley algorithm. However, these
generic techniques are ill-suited for this purpose:

– Generic protocols incur high computation and communication costs.
It is hard to estimate precisely the number of gates required to build a circuit
that implements the (randomized) Gale-Shapley algorithm. A lower bound is
O(n2 log(n)) gates to perform n2 comparisons between values of log(n) bits.
With n players, this gives a lower bound on the computational and com-
munication cost of the protocol of O(n3 log(n)) against passive adversaries.
Against an active adversary corrupting less than n/2 of the players, the
lower bound on the computational and communication cost is O(n4 log(n))
using the most efficient multiparty computation protocol [4]. In contrast, our
protocol incurs a computational and communication cost of O(n3).

– Generic protocols are impractical. The process of building a circuit
that implements Gale-Shapley is difficult and error-prone. In contrast, our
protocol relies on standard cryptographic components (mix networks) with
known efficient implementations.

Efficient private variant of Gale-Shapley. In this paper, we propose an
efficient private variant of the Gale-Shapley matching algorithm that is based
on mix networks rather than generic secure multiparty computations. A private
variant of Gale-Shapley must address two main problems. The first problem is
to redesign the algorithm so as to hide the history of engagements made and
broken, the number of participants free or engaged at any given point, as well as
any other information about the internal state of the algorithm. We propose a
solution to this problem in Section 4. The second problem is that the preferences

of participants must be encrypted. We solve this problem in Section 5 and 6.
Finally, we present a complete private stable matching algorithm in Section 7
and analyze its properties in Section 8.

3 Model and Definitions

Our algorithm is run jointly by a number of independent parties whom we
call matching authorities. The matching authorities collectively run a number
of distributed cryptographic protocols, such as distributed key generation, re-
encryption mix networks, oblivious tests of plaintext equalities, etc. These pro-
tocols serve as building blocks for our private stable matching algorithm and are
described in Section 5.

The security and privacy of our stable matching algorithm reduces to the
security and privacy of the underlying cryptographic building blocks. We can
thus define our adversarial model loosely as the intersection of the adversarial
models of the building blocks. For simplicity, we present our results assuming a
“honest-but-curious” adversary. More precisely, we consider a static adversary
who has passive control over up to all the participants (men and women), and
passive control over up to all but one of the matching authorities, as is commonly
assumed in the literature on mix networks. Our techniques can easily be extended
to accommodate active adversaries, as discussed in Section 8.1.

Definition 1. (Private stable matching algorithm) An algorithm for com-
puting a stable match is private if it outputs a stable match and reveals no other
information to the adversary than what the adversary can learn from that match
and from the preferences of the participants it controls.

4 Hiding the Internal State of the Algorithm

We propose a variant of the Gale-Shapley algorithm that hides its internal state
variables, such as the number of men and women free and engaged at any given
time, or the history of engagements made and broken. The algorithm described
here will not become private until it is combined in Section 7 with the techniques
of Sections 5 and 6. It is presented here in non-private form to simplify the
understanding of later sections. As before, the algorithm takes as input the lists
of preferences of n men and n women and outputs a stable match between them.

Rankings. Let A1, . . . , An denote n men and B1, . . . , Bn denote n women. Every
man ranks the women from most to least desired. Thus, a man assigns rank 0
to the woman he likes best, rank 1 to his second place favorite, and so on all the
way to rank n − 1 to the woman he likes the least (rankings do not allow for
ties). Similarly, every woman assigns ranks to men from 0 (most favorite man) to
n−1 (least favorite man). Being ranked ahead of someone means being assigned
a lower rank, and thus being preferred to that other person. Being ranked behind
someone means being assigned a higher rank, and thus being less desired than
that other person.

Notations. The preference of man Ai is a vector ai = (ri,1, . . . , ri,n), where
ri,j ∈ {0, n−1} is the rank of woman Bj for man Ai. Similarly, the preference of
woman Bj is a vector bj = (sj,1, . . . , sj,n), where sj,i ∈ {0, . . . , n−1} is the rank
of man Ai for woman Bj . The algorithm takes as inputs the vectors a1, . . . , an

and b1, . . . , bn.

Preprocessing. The first step of the algorithm consists of introducing an addi-
tional n “fake” men, denoted An+1, . . . , A2n (no fake women are defined). The
preferences of fake men for women are unimportant to the algorithm. Arbitrarily,
we let ai = (0, 1, . . . , n− 1) for i = n + 1, . . . , 2n. The preferences bj of women
must be augmented to reflect the addition of the fake men. As long as women
rank all fake men behind all real men, their preferences are unimportant to the
algorithm. Arbitrarily, we let every woman Bj assign rank sj,i = i − 1 to man
Ai for i = n + 1, . . . , 2n. We keep the notation bj for the vector of 2n elements
that encodes the augmented preference of woman Bj . After this preprocessing
step, the algorithm has 2n vectors a1, . . . , a2n (each vector contains n elements
that express the rankings assigned by one man to the n women) and n vectors
b1, . . . , bn (each vector contains 2n elements that express the rankings assigned
by one woman to the 2n men). Note that the introduction of fake men, and the
corresponding update of preferences is done entirely by the algorithm without
any involvement from real men or real women.

Computing a stable match. The algorithm proceeds in n rounds. We let Ek denote
the set of engaged men and Fk denote the set of free men at the beginning of
round k = 1, . . . , n + 1 (there are only n rounds; with a slight abuse of notation,
we let Fn+1 and En+1 denote the set of free and engaged men at the end of
the last round). Initially, all real men are free F1 = {A1, . . . , An}, and all fake
men are engaged E1 = {An+1, . . . , A2n}. Arbitrarily, we let fake man An+i be
initially engaged to women Bi. The other sets are initially empty: Ek = Fk = ∅
for k > 1. The algorithm executes the following routine for k = 1, . . . , n:

– While the set Fk is non-empty, select at random one man (denoted Ai) from
Fk. Ai proposes to the woman whom he ranks highest among the women to
whom he has never proposed before (let’s call this woman Bj). Note that
women Bj is always already engaged to a man Ai′ , for some i′ 6= i. One of
two things may happen:
• If Bj ranks Ai ahead of Ai′ , Bj breaks her engagement to Ai′ and be-

comes engaged to Ai. Man Ai is removed from the set Fk and added to
Ek, whereas man Ai′ is removed from Ek and added to Fk+1.

• If Bj ranks Ai behind Ai′ , she stays engaged to Ai′ . Man Ai is removed
from set Fk and added to set Fk+1.

– When Fk is empty, we define Ek+1 = Ek.

The algorithm ends after n rounds and outputs the set En+1 of engaged men
and their current partners.

Invariants. Note that this algorithm preserves certain invariants. All n women
are always engaged to some man. During round k, the number of engaged men
is always exactly |Ek| = n. Engaged men do not move progressively from set Ek

to set Ek+1 during round k, but rather they move all at once at the end of round
k. Every time a new proposal is made, the cardinality of Fk decreases by one,
the cardinality of Fk+1 increases by one and the cardinality of Ek is unchanged,
irrespective of whether a woman changes partner or not.

Proposition 1. This algorithm outputs a stable match between the real men
A1, . . . , An and the n women B1, . . . , Bn.

Proof. We must prove that the match is stable and involves only real men (no
fake men). The proof that the final match is stable is exactly similar to that
given for the original Gale-Shapley algorithm in [6].

The proof that the final match involves only real men is by contradiction. We
observe first that once a woman is engaged to a real man, she will stay engaged
to real men in subsequent rounds, since all women rank all real men ahead of all
fake men. Now assume that a fake man Ai is engaged to a woman Bj when the
algorithm ends after n rounds. This implies that Bj was never engaged to a real
man. Since there are only n women, there must be at least one real man Ai′ who
remains free at the end of the protocol. Now the free real man Ai′ must have
proposed to all n women, Bj included, and must have been rejected by all. But
Bj , who was always engaged to fake men, could not reject Ai′ without breaking
the assumption that all women prefer real men to fake men. ut

5 Cryptographic Building Blocks

Our private stable matching algorithm uses cryptographic building blocks which
we now describe briefly. These building blocks are all standard distributed cryp-
tographic algorithms run jointly by the matching authorities.

Threshold Paillier encryption. The Paillier encryption scheme [18] allows
for threshold encryption [5, 7]. In what follows, all ciphertexts are encrypted
with a threshold version of Paillier. The matching authorities hold shares of the
corresponding decryption key, such that a quorum consisting of all parties can
decrypt.

Robust re-encryption mix network. A re-encryption mix network re-encrypts
and permutes a number of input (Paillier) ciphertexts. In our application, the
matching authorities play the role of mix servers. If we allow active adversaries
(see Section 8.1), we must use robust re-encryption mixnets such as [11] or [16].
When we say the matching authorities “mix” a set of inputs according to a per-
mutation π, we mean that they run the set of inputs through a mix network
and we let π denote the global (secret) permutation (which is not known to the
matching authorities).

Oblivious test of plaintext equality. Let E(m1) and E(m2) be two Pail-
lier ciphertexts. An oblivious test of plaintext equality [12, 13] lets the joint
holders of the decryption key determine whether m1 = m2 without reveal-
ing any other information (hence the name oblivious). We denote this protocol
EQTEST(E(m1), E(m2)). The protocol outputs either m1 = m2 or m1 6= m2.

Repeated test of plaintext equality. The protocol INDEX(a, E(ρ)) takes
as input a vector a = (E(a1), . . . , E(an)) of n Paillier ciphertexts and an ad-
ditional Paillier ciphertext E(ρ) such that there exists one and only one value
i ∈ {1, . . . , n} for which ρ = ai. The protocol outputs the index i such that
ai = ρ. The protocol INDEX can be implemented with n instances of EQTEST.

Finding the larger of 2 plaintexts. Let E(m1) and E(m2) be two Pail-
lier ciphertexts such that m1,m2 ∈ {0, . . . , n− 1} and m1 6= m2. We pro-
pose a protocol COMPARE(E(m1), E(m2)) that outputs true if m1 > m2 and
false otherwise, without leaking any other information. The protocol proceeds
as follows. For i = 1, . . . , n − 1, the matching authorities compute ciphertext
Di = E(m1−m2−i) using Paillier’s additive homomorphism. Note that m1 > m2

if and only if one of the ciphertexts Di is an encryption of 0. The matching au-
thorities mix (i.e. re-encrypt and permute) the set of ciphertexts D1, . . . , Dn−1.
Let D′

1, . . . , D
′
n−1 denote the mixed set. The matching authorities then compute

EQTEST(D′
i, E(0)) for i = 1, . . . , n−1. If an equality is found, they output true,

otherwise they output false.

6 Encrypting Preferences

Let E denote the encryption function for a threshold public-key encryption
scheme with an additive homomorphism, such as for example a threshold ver-
sion [5, 7] of the Paillier encryption scheme [18]. We assume that the matching
authorities are the joint holders of the private decryption key.

Let A1, . . . , Am be m men and B1, . . . , Bn be n women. As in Section 4,
we let ri,j ∈ {0, . . . , n− 1} denote the rank of woman Bj for man Ai, and
sj,i ∈ {0, . . . , m− 1} denote the rank of man Ai for woman Bj . We define pi,j =
E(ri,j) and ai = (pi,1, . . . , pi,n). Similarly, we define qj,i = E(sj,i) and bj =
(qj,1, . . . , qj,m).

6.1 Bid Creation

We define a “bid” as an encrypted representation of the preferences of one
men for women, together with additional “book-keeping” information. For i ∈
{1, . . . , m}, the bid Wi that represents the preferences of man Ai consists of
3n + 2 Paillier ciphertexts defined as follows:

– An encryption E(i) of the index i of man Ai.
– The vector ai = (pi,1, . . . , pi,n).

– A vector vi = (E(1), . . . , E(n)).
– The vector qi = (q1,i, . . . , qn,i).
– A ciphertext E(ρ), where ρ is the number of times the bid has been rejected.

Initially ρ = 0.

The role of the ciphertext E(i) is to maintain the association between bid Wi

and the man Ai whose preferences the bid expresses. The vector ai encodes the
preferences of man Ai for women B1, . . . , Bn. As we shall see, the elements of ai

are permuted at random in the course of the private stable matching algorithm.
Thus the need for the vector vi, whose role is to maintain the association between
the rankings contained in ai and the women these rankings pertain to: the
element in position j of vi is always an encryption of the index of the woman
whose rank is given by the element in position j of ai. The vector qi encodes
the initial rank given to man Ai by women B1, . . . , Bn. Finally, the ciphertext
E(ρ) records the number of times that the bid has been rejected: the value ρ is
updated every time an engagement is broken.

Free and engaged bids. A bid by itself, as defined above, is called a free
bid because it is not paired up with a woman. A bid paired up with a woman is
called an engaged bid. More precisely, an engaged bid is a triplet (Wi, E(j), qj,i),
where:

– Wi = [E(i), ai, vi, qi, E(ρ)] is the bid of man Ai

– E(j) is an encryption of the index j ∈ {1, . . . , n} of a woman Bj

– qj,i is an encryption of the rank given to man Ai by woman Bj

Breaking an engagement. Let (Wi, E(j), qj,i) be an engaged bid. If this bid
loses woman Bj to another bid, we update it as follows. First, we strip the triplet
of the values E(j) and qj,i, keeping only the free bid Wi. Next, we increment the
counter ρ in Wi by one, using Paillier’s additive homomorphism (i.e. we multiply
E(ρ) by E(1) to obtain E(ρ + 1)).

6.2 Bid Mixing

The Paillier cryptosystem allows for semantically secure re-encryption of cipher-
texts. Since bids (both free and engaged) are made up of Paillier ciphertexts, they
can be re-encrypted, and in particular they can be mixed with a re-encryption
mix network. We consider two types of mixing for bids: “external” mixing and
“internal” mixing.

External bid mixing. External mixing takes as input a set of bids, either all
free or all engaged, and mixes them in a way that hides the order of the bids
but preserves the internal position of ciphertexts within a bid. External mixing
considers bids as atomic elements and preserves their internal integrity. More
precisely, let us consider an initial ordering of k free bids W1, . . . ,Wk and let σ
be a permutation on k elements. The external mixing operation re-encrypts all

the Paillier ciphertexts in all the bids (preserving the order of ciphertexts within
each bid) and outputs Wσ(1), . . . , Wσ(k). A set of engaged bids can be mixed
externally in exactly the same way. In this paper, free and engaged bids are
never mixed externally together (since free bids are made of 3n + 2 ciphertexts
and engaged bids of 3n+4, they would not blend together). Intuitively, external
bid mixing hides which bid encodes the preferences of which man.

Internal bid mixing. Internal mixing takes as input a set of bids that may
contain both free and engaged bids. These bids are mixed “internally” in a way
that hides the order of a subset of the ciphertexts within the bids but preserves
the order of the bids themselves. More precisely, let us consider a set of k bids
and let π be a permutation on n elements. The bids in the set are processed one
by one, and output in the same order as they were given as input. A free bid is
processed as follows. Let Wi = [E(i), ai, vi, qi, E(ρ)] be a free bid. We define
the internally permuted bid as π(Wi) = [E(i), π(ai), π(vi), π(qi), E(ρ)], where
the permuted vectors π(ai), π(vi) and π(qi) are defined as follows:

Let ai = (pi,1, . . . , pi,n). Let p′i,1, . . . , p
′
i,n be re-encryptions of the ciphertexts

pi,1, . . . , pi,n. We let π(ai) =
(
p′i,π(1), . . . , p

′
i,π(n)

)
. The vectors π(vi) and

π(qi) are defined in exactly the same way.

Engaged bids are processed in the same way. Let (Wi, E(j), qj,i) be an en-
gaged bid. We define the corresponding internally permuted engaged bid as
(π(Wi), E(j), qj,i).

Note that the same internal permutation π is applied to all the bids in the
set. Note also that, as always in mix networks, the global permutation π is in
fact the combination of permutations chosen by all the matching authorities, so
that the matching authorities themselves do not know π (unless they all collude).
Intuitively, internal mixing hides which woman a particular ciphertext pertains
to.

6.3 Conflicts Between Bids

Opening a free bid. Let π(Wi) = [E(i), π(ai), π(vi), π(qi), E(ρ)] be a
free bid that has been internally permuted by a permutation π on n elements.
Since π is the result of one (or several) internal bid mixing operations, it is not
known to the matching authorities. Let j be the index of the woman Bj assigned
rank ρ by that bid. Opening Wi means determining E(j) and qj,i = E(sj,i)
without learning anything else about the bid. Note that opening a bid would be
trivial if the permutation π were known. Without knowledge of π, the matching
authorities open a bid as follows. The matching authorities jointly compute
α = INDEX(π(ai), E(ρ)). Since the same permutation π is applied to ai, vi and
qi, the element in position α of π(vi) is E(j) and the element in position α of
π(qi) is qj,i = E(sj,i).

Detecting a conflict. Let π(Wi) be a free bid, and let
(
π(Wi′), E(j′), qj′,i′

)

be an engaged bid, both internally permuted according to the same permutation
π on n elements (we assume again that π is not known to the matching author-
ities). Let E(j) and qj,i be the ciphertexts obtained when the free bid π(Wi) is
opened. Detecting a conflict between these two bids means determining whether
j = j′, without learning anything else about the bids. To do so, the matching
authorities jointly compute EQTEST(E(j), E(j′)). The bids conflict if and only
if EQTEST returns an equality.

Resolving a conflict. Let π(Wi) be a free bid that opens up to E(j), qj,i and

conflicts with an engaged bid
(
π(Wi′), E(j), qj,i′

)
for woman Bj . Resolving

the conflict means outputting a new free bid and a new engaged bid such that:

– if Bj ranks Ai ahead of Ai′ , the free bid is a re-encryption of Wi′ and the
engaged bid is a re-encryption of (Wi, E(j), qj,i)

– if Bj ranks Ai behind Ai′ , the free bid is a re-encryption of Wi and the
engaged bid is a re-encryption of (Wi′ , E(j), qj,i′)

without revealing anything else about the bids (in particular the protocol does
not reveal which bid wins the contested woman). To resolve the conflict, the
matching authorities first create an engaged bid

(
π(Wi), E(j), qj,i

)
out of the

free bid π(Wi). The two engaged bids are then mixed externally. Let q′j,i′ and
q′j,i denote the re-encrypted and permuted images of qj,i′ and qj,i. The matching
authorities jointly compute COMPARE(q′j,i′ , q

′
j,i). The result of this comparison

determines (privately) which bid stays engaged, and which is stripped of Bj to
make a free bid.

7 Private Stable Matching Algorithm

We describe a private algorithm for finding a stable matching in which men
propose to women. The algorithm follows the general structure of the algorithm
described in Section 4, but operates on encrypted bids to preserve privacy. The
algorithm is run by a number of matching authorities. We use the notations
defined in Section 6.

Setup. In a setup step, the matching authorities jointly generate the pub-
lic/private key pair for a threshold public-key encryption scheme E with an
additive homomorphism. For example, E may be a threshold version [5, 7] of the
Paillier encryption scheme [18].

Input submission. As before, we let ri,j ∈ {0, . . . , n− 1} denote the rank of
woman Bj for man Ai, and sj,i ∈ {0, . . . , n− 1} denote the rank of man Ai for
woman Bj . Every man Ai submits a vector of n Paillier ciphertexts

ai = (pi,1, . . . , pi,n),

where pi,j = E(ri,j), and every woman Bi similarly submits a vector of n Paillier
ciphertexts

bj = (qj,1, . . . , qj,n),

where qj,i = E(sj,i).

Addition of fake men. The matching authorities define an additional n fake
men An+1, . . . , A2n as described in Section 4. Specifically, the matching authori-
ties define ri,j = j− i+n mod (n−1) for i ∈ {n + 1, . . . , 2n} and j ∈ {1, . . . , n}
and compute the corresponding vectors ai = (pi,1, . . . , pi,n) for i = n+1, . . . , 2n,
where pi,j = E(ri,j). The matching authorities also define sj,i = i − 1 for
j ∈ {1, n} and i ∈ {n + 1, 2n} and augment the vectors bj with these new values
(we keep the notation bj for the augmented vectors): bj = (qj,1, . . . , qj,2n). After
this preprocessing step, the matching authorities have 2n vectors a1, . . . , a2n

(each vector contains n ciphertexts that express the rankings assigned by one
man to the n women) and n vectors b1, . . . , bn (each vector contains 2n cipher-
texts that express the rankings assigned by one woman to the 2n men).

Bid creation. The matching authorities create 2n bids W1, . . . ,W2n, where Wi

encodes the preferences of man Ai. Bid Wi is defined as follows (see Section 6.1):

Wi = [E(i), ai, vi, qi, E(0)]

Throughout the algorithm, bids are divided into free bids and engaged bids. Ini-
tially, the n bids corresponding to real men are free: F1 = (W1, . . . ,Wn), whereas
the n bids corresponding to the fake men are engaged: E1 = (Wn+1, . . . , W2n).
More precisely, man Wn+j is paired with woman Bj . For j = 1, . . . , n the engaged
bid of (fake) man An+j is thus defined as:

(
Wn+j , E(j), qj,n+j

)

Initial mixing. The sets E1 and F1 are each independently mixed externally
by the matching authorities. Next, the matching authorities mix internally the
set E1 ∪ F1.

Computing a stable match. As in Section 4, the core of our private stable
matching algorithm proceeds in n rounds. We let Ek denote the set of engaged
bids and Fk denote the set of free bids at the beginning of round k = 1, . . . , n+1.
The algorithm executes the following routine for k = 1, . . . , n:

While the set Fk is non-empty, select at random one free bid (denoted Wi) from
Fk. Then:

1. The matching authorities jointly open up bid Wi, and learn E(j) and qj,i =
E(sj,i).

2. There is always exactly one engaged bid in Ek that conflicts with Wi. The
matching authorities jointly find that engaged bid using (at most |Ek| = n
times) the conflict detection protocol described in Section 6.3. Let’s call the
conflicting engaged bid (Wi′ , E(j), qj,i′).

3. Using the conflict resolution protocol of Section 6.3, the matching authorities
resolve the conflict. The conflict resolution protocol does not reveal which
bid wins but it ensures that one bid (either Wi or Wi′) is added to Ek and
the other to Fk+1. For clarity, we explain what happens behind the scene:
– If Wi wins, it becomes an engaged bid (Wi, E(j), E(sj,i)) and is moved

from the set Fk to the set Ek. The engagement of bid (Wi′ , E(j), E(sj,i′))
is broken (see Section 6.1) and the newly free bid Wi′ moves from the
set Ek to Fk+1.

– If Wi loses, it remains free and moves from Fk to Fk+1. The engaged
bid (Wi′ , E(j), E(sj,i)) stays in the set Ek.

4. The set Ek is mixed externally. All bids in the sets Ek ∪ Fk ∪ Fk+1 are then
mixed internally.

At the end of the round (when the set Fk is empty), we define Ek+1 = Ek. The
sets Ek+1 and Fk+1 are independently mixed externally. The set Ek+1 ∪ Fk+1 is
then mixed internally.

Bid decryption and final output. After n rounds, the final set En+1 consists
of n engaged bids of the form (Wi, E(j), E(sj,i)), where Wi = [E(i), ai, vi, qi, E(ρ)].
At this point, the matching authorities retain only two ciphertexts from an en-
gaged bid: E(i) and E(j). The matching authorities thus obtain n pairs of the
form (E(i); E(j)). These pairs (E(i); E(j)) are (externally) mixed by the match-
ing authorities, then jointly decrypted. The decryption of pair (E(i); E(j)) re-
veals than man Ai is paired with woman Bj .

8 Properties

Proposition 2. The algorithm of Section 7 terminates after n rounds and out-
puts a stable matching between n real men and n real women. The computational
cost of the algorithm is dominated by the cost of running 3n2 re-encryption mix
networks on at most 2n Paillier ciphertexts. The corresponding communication
cost is O(n3).

Since we assume an honest-but-curious passive adversary, the proof of correct-
ness follows directly from Proposition 1. The computational cost is dominated
by the cost of re-encryption mix networks. For every element in Fk in every
round k, the matching authorities must run 3 re-encryption mix networks: one
to resolve the conflict between bids, one for external mixing and one for internal
mixing. The overall computational cost is thus O(n3) modular exponentiations.
This is a substantial cost, but not unreasonable considering that stable matching
algorithms are typically run off-line and that low latency is not a requirement.
In practice, stable matching algorithms involving up to a few thousands of par-
ticipants could be run privately within a day on commodity hardware.

Proposition 3. The algorithm of Section 7 is private according to Definition 1,
assuming Paillier encryption is semantically secure and the underlying re-encryption
mix network is private.

Proof (Sketch). In the execution of the protocol, the matching authorities com-
pute and output intermediate values (Paillier ciphertexts, modular integers and
boolean values), then finally a stable match. We prove that a passive adversary
cannot distinguish between the sequence of intermediate values produced by the
protocol, and a random sequence of intermediate values drawn from an appro-
priate probability distribution. The proof is by contradiction. If an adversary A
can distinguish with non-negligible advantage the output of the algorithm from
random, then by a standard hybrid argument, there exists one intermediate value
V that A can distinguish from random.

If V is a Paillier ciphertext, we can use A to break the semantic security of
Paillier encryption, contradicting our assumption about Paillier’s security.

If V is a modular integer or a boolean value, the value of V depends on the
internal or external permutation applied by the matching authorities immedi-
ately before computing V . Thus if A can distinguish between different values of
V , we can use A to distinguish between the outputs produced by a re-encryption
mix-network using different permutations, breaking the assumption that the mix
network is private. ut

8.1 Active Adversaries

We have assumed a passive adversary throughout, but our techniques can be
extended to accommodate active adversaries at the cost of additional proofs of
correct execution. We consider here an active adversary who has static control
over up to all the participants (men and women), and static control over up to
a strict minority of matching authorities. We must augment the private stable
matching algorithms of Section 7 with proofs of correct protocol execution by
participants and matching authorities. These proofs are verified by the matching
authorities (a strict majority of whom is assumed honest).

The participants need only prove to the matching authorities that the pref-
erence vectors they submit (ai for man Ai and bj for woman Bj) follow the
protocol specifications, i.e. are Paillier encryptions of a permutation of the set
{0, . . . , n− 1}. We use non-interactive zero-knowledge (NIZK) proofs that the
decryption E−1(C) of a Paillier ciphertext C lies within a given plaintext set
{0, . . . , n− 1}. For Paillier encryption, these proofs reduce to proving knowledge
of the root of the randomization factor [5]. These proofs can also be combined
conjunctively and disjunctively using standard techniques [22]. We can thus
prove that a vector ai = (E(r1), . . . , E(rn)) is well-formed with the following
NIZK proof:

∧
j∈{0,...,n−1}

(∨
i∈{1,...,n}(E

−1(E(ri)) = j)
)
.

The correct behavior of matching authorities must itself be verified. The
building blocks of Section 5 all accept variants that are secure against active
adversaries. As usual, a matching authority caught not following the protocol is
excluded from future computations and replaced by a new authority.

9 Conclusion

We have proposed a private stable matching algorithm based on a variant of the
Gale-Shapley algorithm. Assuming a majority of honest matching authorities,
our protocol correctly outputs a stable match, and reveals no other information
than what can be learned from that match and from the preferences of par-
ticipants controlled by the adversary. We have proved the security and privacy
of our protocol based on assumptions about standard distributed cryptographic
protocols. Our protocol is practical and we hope that it will be used to offer
greater privacy to the tens of thousands of students and professionals whose
careers are affected every year by matching algorithms.

References

1. Association of Psychology Postdoctoral and Internship Centers. http://www.appic.org/match/
2. C. Bandela, Y. Chen, A. Kahng, I. Mandoiu and A. Zelikovsky. Multiple-object XOR auctions

with buyer preferences and seller priorities. In Competitive Bidding and Auctions, K.K. Lai
and S. Wang, ed. Kluwer Academic Publishers.

3. Canadian Resident Matching Service (CaRMS). http://www.carms.ca/jsp/main.jsp
4. R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt and T. Rabin. Efficient multiparty computa-

tions secure against an adaptive adversary. In Proc. of Eurocrypt’99, pp. 311–326.
5. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s

probabilistic public-key system. In Proc. of Public Key Cryptography 2001, pp. 119–136.
6. D. Gale and H. S. Shapley. College Admissions and the Stability of Marriage. American Math-

ematical Monthly, 1962.
7. P.-A. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting or lotteries.

In Proceedings of Financial Cryptography 2000, pp. 90–104, 2000.
8. D. Gale and M. Sotomayor. Ms Machiavelli and the Stable Matching Problem. In American

Mathematical Monthly, 92, pp. 261–268, 1985.
9. O. Goldreich, S. Micali and A. Widgerson. How to play any mental game. In STOC’87, pp. 218–

229. ACM, 1987.
10. D. Gusfield and R. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press.
11. M. Jakobsson, A. Juels, and R. Rivest. Making mix nets robust for electronic voting by ran-

domized partial checking. In Proc. of USENIX’02, pp. 339–353.
12. M. Jakobsson and C. Schnorr. Efficient Oblivious Proofs of Correct Exponentiation. In Proc. of

CMS 99.
13. H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In Proc. of

Asiacrypt 2003, pp. 416–433. LNCS 2894.
14. National Matching Services Inc. http://www.natmatch.com/
15. National Resident Matching Program (NRMP). http://www.nrmp.org/
16. A. Neff. A verifiable secret shuffle and its application to e-voting. In Proc. of ACM CCS ’01,

pp. 116–125.
17. M. Ostrovsky. Stability in supply chain networks. Available on the web at economics.uchicago.

edu/download/Supply\%20Chains\%20-\%20December\%2012.pdf
18. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proc.

of Eurocrypt 1999, pp. 223–238. LNCS 1592, Springer Verlag.
19. A. Roth. The Economics of Matching: Stability and Incentives. In Mathematics of Operations

Research, 7, pp. 617–628, 1982.
20. A. Roth and M. Sotomayor. Two-sided matching: a study in game-theoretic modeling and anal-

ysis. Econometric Society Monograph Series (1990). New York: Cambridge University Press.
21. Al Roth’s game theory, experimental economics, and market design page. Bibliography of two-

sided matching. On the web at http://kuznets.fas.harvard.edu/~aroth/bib.html#matchbib
22. A. D. Santis, G. D. Crescenzo, G. Persiano, and M. Yung. On monotone formula closure of szk.

In Proc. of the IEEE FOCS 1994, pages 454–465, 1994.
23. Scottish PRHO Allocation (SPA) scheme. http://www.nes.scot.nhs.uk/spa/
24. M. Soerensen. How smart is smart money? An empirical two-sided matching model of ven-

ture capital. Available on the web at http://finance.wharton.upenn.edu/department/Seminar/
2004SpringRecruiting/Micro/SorensenPaper-micro-012204.pdf

25. C.-P. Teo, J. Sethuraman and W.-P. Tan. Gale-Shapley stable marriage problem revisited: strate-
gic issues and applications. In Proc. of IPCO ’99: the 7th Conference on Integer Programming
and Combinatorial Optimisation, pp. 429–438. LNCS 1610.

26. A. C. Yao. Protocols for secure computations. In FOCS’82, pp. 160–164. IEEE Computer Soci-
ety, 1982.

