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ABSTRACT
In order to meet performance goals, it is widely agreed that
vehicular ad hoc networks (VANETs) must rely heavily on
node-to-node communication, thus allowing for malicious
data traffic. At the same time, the easy access to informa-
tion afforded by VANETs potentially enables the difficult
security goal of data validation. We propose a general ap-
proach to evaluating the validity of VANET data. In our
approach a node searches for possible explanations for the
data it has collected based on the fact that malicious nodes
may be present. Explanations that are consistent with the
node’s model of the VANET are scored and the node accepts
the data as dictated by the highest scoring explanations.
Our techniques for generating and scoring explanations rely
on two assumptions: 1) nodes can tell “at least some” other
nodes apart from one another and 2) a parsimony argument
accurately reflects adversarial behavior in a VANET. We
justify both assumptions and demonstrate our approach on
specific VANETs.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General
– Security and Protection

General Terms
Security

Keywords
Location verification, data validation, malicious node

1. INTRODUCTION
The vision for vehicular ad hoc networks (VANETs) in-

cludes the frequent exchange of data by vehicles (or nodes)
to facilitate route planning, road safety and e-commerce ap-
plications. Network security is clearly important for each
of these applications. The traditional approach to network
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security involves a key management solution that allows for
data integrity and the authentication of network “insiders”.
Besides raising privacy concerns and being unwieldy for a
VANET, we believe this approach solves the wrong problem.
In a VANET, far simpler attacks than data modification ex-
ist, such as for example transmitting fraudulent data about
road congestion or vehicle position, and such attacks can be
quite damaging. Further, in large-scale VANETs there is
no guarantee that previously honest nodes will not be cor-
rupted in the future. Hence, security in a VANET relies
upon the potentially more challenging problem of detecting
and correcting malicious data.

We propose a general, sensor-driven technique that allows
nodes to detect incorrect information and identify the node
or nodes that are the source of this incorrect information
with high probability. A key component of our approach is
that each node maintains a model of the VANET containing
all the knowledge that the node has of the VANET. Physics
and safety dictate certain rules (e.g. two nodes can never
occupy the same location at the same time) and statistical
properties of events (nodes rarely travel faster than 100 mph;
faster moving nodes are better spaced) that make up the
model. A node may seed the model with data it has observed
directly (we assume that a node always trusts the data it
has gathered itself). The node can then test the validity
of data received from other nodes against this model of the
VANET. If all the data agrees with the model (perhaps with
high probability), the node accepts the validity of the data.

To deal with data that is inconsistent with the model of
the VANET we have developed a heuristic that we term ad-
versarial parsimony. In short, parsimony assumes that an
attack involving a few malicious nodes is more likely than
an attack that requires collusion between a large number of
nodes. Given this adversarial model, a node will always look
for a way of restoring consistency based on the simplest pos-
sible explanation for the disagreement. This often resolves
to assuming the smallest possible number of corrupt nodes,
and hence, nodes often need to be able to tell at least some
other nodes apart from one another. Without that ability,
a malicious node can create additional fictitious nodes to
bolster its view of the VANET. This is known as a Sybil
attack [5].

To address such attacks we leverage the sensor capabilities
of the nodes. The sensor capabilities of the nodes enable
the distinguishing of nodes in the network to a large degree;
hence thwarting the Sybil attack. After determining how
many nodes are indeed present, a node searches through
explanations for the inconsistent data based on the possible



VANET A VANET B

Figure 1: The black circles represent colluding, ma-
licious nodes, and the dashed circles represent the
communication range of the grey node roughly in
the center. In VANET A the malicious nodes are
successful as they are able to dominate the data re-
ceived by the central grey node. Over time, how-
ever, a more likely configuration is VANET B.

presence of malicious nodes, and orders the explanations in
accordance with the parsimony heuristic. The data that is
accepted by the node is consistent with the highest ranking
explanation or explanations.

Typically distributed algorithms work best as network
density increases, and our approach is no exception. Indeed
the network density assumption provides strong justifica-
tion for our approach. In a sufficiently dense network it is
reasonable to assume multiple data transmission pathways
between nodes, thus affording the network sufficient data
to detect inconsistencies. Further, density combined with
mobility supports parsimony, as attack success depends on
certain topologies of malicious nodes and these topologies
are hard to maintain in a mobile network. For example, the
colluding adversaries (indicated by the black circles) in part
A of Figure 1 are successful in convincing the honest node
(shown in grey at the center of the circle) of false data, but
in a VANET it is difficult to maintain such a configuration
for any significant duration.

We believe our approach yields algorithms that work on a
sufficient time-scale for dynamic route discovery. In particu-
lar, note that the model of the VANET is constructed offline
(to a large extent it can be constructed when manufacturing
the vehicles), incoming data can be evaluated continuously
and past work can be leveraged in time-critical situations.
In addition, we emphasize that our approach is specifically
designed, and enabled by, the properties of a VANET. In
general, ad hoc network security proves quite challenging,
often requiring strong assumptions such as no node collu-
sion [1] and no “insider” attacks [7]. Remarkably, when
applying our approach to the VANET setting, we are able
to provide security against strong, colluding adversaries who
may well be trusted members of the network.

Organization. We begin in Section 1.1 with related work.
We discuss VANET adversaries in Section 2 and node distin-
guishability in Section 3. We present our model in Section 4.
We give examples of VANETs that satisfy our assumptions
in Section 5 and conclude in Section 6.

1.1 Related Work
Douceur [5] observes that the redundancy checks com-

monly built into distributed systems to mitigate the threats
posed by faulty or malicious participants fail when a sin-
gle adversary can present multiple distinct identities. This
so-called “Sybil” attack enables the adversary to control a
substantial fraction of the system, contrary to the assump-
tion on which redundancy checks are based.

When there is no central, trusted authority to certify iden-
tities, Douceur proposes the use of “resource testing” to ver-
ify the uniqueness of online identities in a distributed com-
puting environment. Resource testing assumes that there
is a resource (such as storage, computational or communi-
cation ability) that is available to all participants in nearly
identical amounts. To verify that distinct identities corre-
spond to distinct participants, one need only challenge the
various identities to prove simultaneously that they have as
much of the physical resource as would be available to a
participant. This technique is not applicable in a VANET:
neither storage, nor computational or communication abil-
ity are suitable for resource testing in VANETs, since an
adversary may cheaply obtain a lot more of these resources
than a normal node.

Newsome et al. [12] study the threat posed by the Sybil
attack in wireless sensor networks, and propose new types
of defenses:

• Radio resource testing: this form of resource testing is
based on the assumption that a radio cannot send or
receive simultaneously on more than one channel. It
does not apply to VANETs since a node may cheaply
acquire multiple radios.

• Registration: each participant is assigned a unique
identity by a central, trusted authority. License plate
numbers currently used to identify vehicles are an ex-
ample of that approach. Electronic unique identifiers
in a VANET however raise much more serious pri-
vacy issues than their physical counterparts, and are
unlikely to gain broad public acceptance. Further-
more, an approach based on assigning unique identi-
fiers scales poorly (as demonstrated by the expense of
administering license plate registrations). As the num-
ber of participants in the network grows larger, the
task of maintaining and revoking identities becomes
unmanageable.

• Position verification. In this approach, the network
verifies the position of each node. Identities that come
from the same location are assumed to belong to one
and the same participant. [12] assumes that nodes are
static and does not develop this approach.

We demonstrate how position verification can be used to
prevent Sybil attacks in VANETs. Position verification is
a well known problem in ad hoc networks, dating back (at
least) to the work of Denning and MacDoran [4]. Our ap-
proach to position verification is most similar to the sensor-
based protocols of [13, 14, 9]. In addition, we use sensors to
enable public key exchange over what is essentially location-
limited channel, as is done in [2].

Another component of our approach is something we term
adversarial parsimony. Informally this means finding the
best explanation for corrupted data. The expression “Oc-
cam’s Razor” or “Principle of Parsimony” is often used for



techniques that choose the simplest explanation as the best.
Our first example in Section 5.1 illustrates such an approach.
However, as we will see later, more sophisticated statisti-
cal approaches usually combine likelihood calculations with
some measure of the complexity of the model. To remain
general, we have formulated adversarial parsimony as using
any ordering relationship among the explanations for the
corrupted data to determine the “best” explanation(s).

As in [11] we use sensor data in order to detect mali-
cious nodes. Our approach is more general than [11] because
we allow for a variety of sensing mechanisms, that is nodes
can sense properties of the network directly without relying
on the presence of neighboring honest nodes. This affords
the nodes increased autonomy when deciding the validity of
VANET data.

An ad hoc network attack that has garnered considerable
attention as of late is the wormhole attack [8]. Although
in a highly mobile network such as a VANET a wormhole
attack is quite hard to mount, we note that our sensor-driven
approach may well detect such an attack. Indeed, directional
antennas are used effectively to protect against wormhole
attacks aimed at disrupting routing in [6].

2. ADVERSARIES IN A VANET
In this section we consider the different features of an

adversarial attack (Section 2.1) as well as the potential for
adversaries to use our data validation approach to their ad-
vantage (Section 2.2).

2.1 Classification of Attacks
Recall we term any attack in which a node attempts to

convince other VANET nodes of incorrect data a “malicious
data attack”. A malicious node is successful in such an at-
tack when the target node or nodes accepts the incorrect
data as valid. We offer a broad taxonomy of the malicious
data attacks in VANETs. Our taxonomy overlaps some-
what with that given in [12] in the distinguishing of local
and extended targets, but differs in that, unlike [12], it is
tailored specifically to VANETs. For example, many of the
settings considered in [12] involve fixed nodes and collabo-
rative decision-making techniques such as voting. In such
a network, spoofed nodes (or “Sybil nodes”) can be used
to direct the election as desired by the malicious node, so
that issues such as the simultaneous participation of spoofed
nodes are very important. In our networks, although nodes
gather sensor data from other nodes, decisions are not based
on the accumulation of agreeing data but rather on the like-
lihood of particular attack scenarios in a VANET. Hence,
we find it more useful to distinguish attacks based on their
nature, target (local or projected), impact (undetected, de-
tected, or corrected) and scope (limited or extended). In
the following we consider each of these notions in turn (ex-
amples follow in Section 5).

Attack Nature. There are many different types of mali-
cious VANET data. An adversary may report false infor-
mation about other parts of the VANET (e.g. nonexistent
traffic jams) or false information about itself (e.g. wrong
location). Because each node uses all the VANET data it
collects to evaluate the validity of new information, the den-
sity of the network and the sensors available may make some
attacks unpreventable. For example, when nodes can only
sense the distance to other nodes rather than precise loca-

tion (as in Section 5.2), the combined sensor data can only
reduce the location of an adversarial node to a certain small
“territory.” Within its territory the adversary can mount
the Sybil attack at will, creating spoofed nodes, and as long
as the attack conforms to the model of the VANET, it will
go undetected.

Attack Target. We allow for strong adversaries who are
able to communicate over long distances. An adversary with
such an extended communication radius has flexibility in the
location of the node or nodes that it attempts to convince
of false data. In the examples of Section 5 we distinguish
between local targets (i.e. those within close proximity of
the adversary) and remote targets. With a local target,
the adversary may have more success since the likelihood
of conflicting data from neighboring nodes is reduced. That
said, the proximity necessary for a local attack is difficult
to maintain, hence we view vulnerability to a local attack
to be less worrisome. An adversary may have more remote
target possibilities, but data received from nodes closer to
the target may make such attacks unsuccessful.

Attack Scope. The scope of an uncorrected attack is mea-
sured in terms of the area of nodes that have VANET data
of uncertain validity because of the attack. We call such
nodes the victim nodes. The scope of an attack is limited if
the victims consist of a small area of nodes. Note that this
area may be a small neighborhood of the malicious nodes,
or in the case of a remote target, it may be a small area
remote from the malicious nodes. We term an attack affect-
ing a larger area of nodes an extended attack. Our approach
is designed to forestall a local attack from growing into an
extended attack through information propagation.

Attack Impact. When an adversary attempts to convince
the target nodes of incorrect data there are three possible
outcomes. The attack may be undetected by the target nodes
(and thus completely successful) it may be detected by one or
more target nodes but still leave the nodes with uncertainty
about received data, and in the most favorable outcome,
the attack may be detected and corrected (i.e. no data un-
certainty remains). An undetected attack can occur when
the target nodes are isolated or completely surrounded by
malicious nodes; in this case the target node will accept in-
correct data. When target nodes have some access to honest
nodes they may be able to detect that an attack is underway
through inconsistencies in the data they collect, but at the
same time they might decline to correct the attack due to in-
sufficient information, or otherwise risk making an incorrect
diagnosis via the parsimony argument (a risk, for example,
in VANET A of Figure 1) in which case the malicious data
might remain uncorrected. With access to sufficiently many
honest nodes or the ability to collect precise data, the tar-
get nodes may be able to use the parsimony argument to
correctly identify the false event information and correct for
the attack.

2.2 Exploiting the Model
A central aspect of the parsimony heuristic is a model of

the possible attacks, so that the most likely explanation (of
the attack in progress) can be used to resolve inconsistencies
in the database. For this paper we have defined the model
of the adversary in general terms as specifying an ordering



relation among possible explanations for inconsistencies in
the data. When specifying the model as an ordering relation
it can be formulated combinatorially (e.g. the explanation
with the fewest malicious nodes) or with more elaborate sta-
tistical models. In later sections, we give concrete examples
of models of the adversary, but here we wish to address a
more fundamental question—can the adversary exploit the
model?

Usually statistical methods are applied in situations in
which the phenomena will not change in response to the
statistical methods used to study the phenomena. However,
in the setting of a VANET, an adversary might well choose
to modify its attack based on knowledge of the adversarial
model in use. More specifically, it is possible for an adver-
sary to devise an attack whose effects are hidden by other
(incorrect) explanations deemed more likely in the ordering
relation used to determine the most likely attack.

This issue is dealt with in several ways. First, the initial
model of the adversary should be strong enough that these
hidden attacks are more costly than simpler attacks—the
examples in Section 5 have this property. Second, we en-
vision that the adversarial model will be changeable. This
allows for short term adjustments in response to changes
in adversarial patterns of attacks (in this way popular hid-
den attacks will eventually be considered more likely). It
also allows for longer term adjustments as adversaries de-
velop new attacks or exploit new technology (anticipating
the usual “arms race” that develops in security systems).
Nevertheless, even if the possibility of more sophisticated
hidden attacks is incorporated into the model, the possibil-
ity of adversaries using more mundane attacks will always
make the task of a sophisticated attacker easier.

3. DISTINGUISHABILITY
Our technique for telling nodes apart relies on four as-

sumptions: 1) a node can bind observations of its local en-
vironment with the communication it receives, 2) a node
can tell its neighbors apart locally, 3) the network is “suffi-
ciently” dense and 4) after coming in sufficiently close con-
tact, nodes can authenticate their communication to one
another. In this section, we review these four assumptions
and explain how they may be satisfied in practice.

3.1 Local distinguishability
We assume that a node can tell its neighbors apart locally.

More precisely, whenever a node A receives messages from
two distinct nodes B and C that are sufficiently close to A,
node A can verify that these messages come from separate
physical entities. If this verification fails, A must assume
that all messages came from a single node that claimed to
be both B and C. The assumption of local distinguishabil-
ity allows a node to apply the parsimony heuristic within
the local neighborhood where the node has the ability to
distinguish neighbors.

To illustrate how local distinguishability may be achieved
in practice, we propose the following example. Local distin-
guishability may be achieved in a VANET by meeting these
two conditions:

1. A node can tie a message with the physical source of
that message.

2. A node can measure the relative position (with respect
to its own position) of the source of a message (within
a certain radius).

These conditions are met, for example, if nodes are equipped
with cameras and exchange messages with one another using
signals in the visible or infrared light spectrum. The node
may estimate the relative position of the source of the mes-
sage (the beam of light) by analyzing the images taken by
its camera. Furthermore, the message is directly tied to the
physical source from which it emanates since the message
consists of the beam of light itself.

Other physical characteristics of a transmission can be
used to compute the location of the sender of a message,
such as the time of arrival (a measurement of the round-
trip time between two nodes as in [3]), the angle of arrival
(for radio signals) or the received signal strength (also for
radio signals). These measurements, while potentially easier
to collect than camera images, may be vulnerable to some
amount of tampering as nodes may reduce (or, at higher
cost, increase) the strength of their signal [9]. Nevertheless,
as we shall see in Section 5.2, the data provided by these
measurements remains useful to distinguish between nodes.

3.2 Extended Distinguishability
We have just shown how nodes can establish local neigh-

borhoods of distinguishability. We discuss now how to ex-
pand distinguishability in both time and space, beyond the
immediate neighborhood in which a node can validate the
existence of other nodes by direct physical sensing. This
expansion is achieved by letting nodes exchange informa-
tion with one another about what they sense in their local
neighborhoods. Communication over larger distances may
in practice be limited by latency and bandwidth consider-
ations. We ignore this issue however, and assume an ideal
model of propagation, since all the communication we care
about takes place over a relatively small geographic area
(the value of information in a VANET decreases rapidly as
it gets further removed from its source.)

Network density. We assume that the graph of possible
communication between nodes is always connected, and fur-
thermore that there exist multiple communication pathways
between pairs of nodes. We make this assumption even in
the presence of malicious nodes, which may refuse to for-
ward messages (see [11] for routing protocols that mitigate
the effect of misbehavior by malicious nodes). The higher
the connectivity of the graph, the better nodes can carry the
parsimony heuristic beyond the immediate bounds of their
neighborhoods of distinguishability. The following example
illustrates this point. Assume a node A has 2 nodes B1

and B2 in its neighborhood of distinguishability. If both B1

and B2 claim that nodes C1 and C2, located outside of A’s
neighborhood of distinguishability, are distinct, then A may
extend its belief that nodes B1 and B2 are distinct (and not
both malicious) to believing that nodes C1 and C2 are also
distinct.

Authenticating communication. We assume that every
node has a private/public key pair at any given time. These
keys allow nodes to authenticate one another’s messages over
short periods of times (a few seconds to a few minutes). The
key pairs are not meant to be long lived: they are generated
by a node itself (thus obviating key distribution or certifi-
cation) and do not allow for extended tracking of vehicles,
since they are refreshed periodically. A node may generate
new key pairs constantly. We assume only that most nodes



are willing to keep the same key pair for short periods of
time. Because of these weak identification assumptions, this
approach has the potential for good privacy protection (we
discuss privacy in Section 3.3).

Signing messages extends local distinguishability across
time and space for honest nodes, since messages coming from
a node can be authenticated as long as the node keeps the
same public key, regardless of where and when the messages
originate. To give a simple example, consider a node A that
has had at one time two nodes B and C within its local
neighborhood of distinguishability and has thus been able
to establish that B and C are truly distinct nodes. Though
they may move out of A’s neighborhood of distinguishabil-
ity, nodes B and C remain distinguishable to A as long as
they sign their messages with the same public keys. Distin-
guishability is lost when B and C refresh their public keys.

We allow for strong adversaries who may collude and ex-
change private keys. However, as demonstrated in Section 5,
once a node has been identified as malicious, any data dis-
tributed by this node (e.g. node location observations) are
considered to be of questionable validity. Indeed, if a large
group of malicious nodes share private keys with the goal of
all appearing to be at a location that only contains one of
them, then if just one of them is conjectured to be suspicious
(malicious or a spoof), all of them will be, as the attack re-
quires that they all observe each other. Hence, large-scale
abuse of distinguishability may actually be counterproduc-
tive.

3.3 Privacy
Our decentralized approach to data validation is designed

to offer good privacy protection to nodes in a VANET. Data
is tested for consistency in a distributed fashion, so that
privacy sensitive data need not flow to a centralized location.
In order to track an individual vehicle, an attacker must own
nodes near that vehicle at all time, which is a costly attack.

We have shown that authenticated communication facili-
tates extended distinguishability of nodes, but no long lived
identification of nodes is required. Nodes can change their
identification frequently by generating new keys on a regu-
lar basis, thereby making it difficult to link data over longer
time periods and infer the identity and trajectory of indi-
vidual vehicles. There is a trade-off between privacy and
the ability to detect and correct malicious data. Frequently
changing keys increases privacy but offers less information
to detect and correct malicious data.

Some care must be taken when changing keys to prevent
the new and old identities from being linked. For example,
if an isolated vehicle that frequently and regularly reports
its position changes its key, then the two trajectories (one
authenticated with the old key, the other with the new key)
will likely be easily linked. To increase the ambiguity and
make it harder to link trajectories, nodes can use one or more
of the following: 1) changing keys at synchronized times, 2)
introducing gaps in data reported near key changes, and 3)
changing keys when nodes are near one another.

4. MODEL
We propose the following model of a VANET. Let P be

a Euclidian space and let ||P1 − P2|| denote the Euclidian
distance from point P1 to P2. We define events and nodes
as follows:

An event E is a pair E = (D, f), where D is the data
associated with the event and f , the locator function, is a
continuous function f : T → P that indicates the location of
the event over the lifetime T ⊆ R of the event. The lifetime
of an event may be a single point in time T = {t} or an
interval of time T = [t0, t1]. The data associated with an
event may be, e.g., the identity or speed of the node at the
location given by f(T ).

A node is a triplet (N, f, ρ), where:

• N ∈ N is an integer that uniquely identifies the node,
• f , the locator function of the node, is a continuous

function f : T → P that indicates the position of the
node over the lifetime T ⊆ R of the node,

• ρ ∈ R+ is the observation radius,

Assertions (observed events). Nodes can observe events
that are within their observation radius, and share their ob-
servations with one another. We call an observed event an
assertion. The assertion 〈(D, f)〉Oi states that node Oi (the
observer) witnessed event (D, f). The following rule ex-
plains the conditions under which a node can record an as-
sertion. Let (Ni, fi, ρi) be a node and let E = (D, f) be
an event. Let Ti be the lifetime of node Ni and T be the
lifetime of the event E. If T ⊆ Ti and for all t ∈ T , we have
||f(t) − fi(t)|| ≤ ρi, then node Ni can record the assertion
〈(D, f)〉Ni .

Nodes may also share assertions with one another. While
in practice the sharing of assertions may be limited by la-
tency and bandwidth considerations, we assume ideal prop-
agation in our model. In other words, an assertion recorded
by a node is instantly universally available to all other nodes.
This assumption is justified by the fact that we consider
only local propagation of assertions in a relatively small ge-
ographic neighborhood (an assertion is of less value to nodes
far removed from the event). We denote the global database
of all assertions contributed by all nodes by K.

Model of the VANET. A model of the VANET specifies
what events or sets of events are possible. The model may
be rule-based or based on statistical properties of events.
Formally, let E be the set of all sets of events. The model of
the VANET is a function M : E → {valid, invalid}. A set of
events {E1, . . . , En} ∈ E is called consistent with the model
of the VANET if M(E1, . . . , En) = valid and inconsistent if
M(E1, . . . , En) = invalid. We extend the domain of M to
assertions (and sets of assertions) in the natural way. We
may also consider models that return a probability p ∈ [0, 1]
of validity rather than making a binary decision between
valid and invalid.

Our adversarial model is as follows: we assume that mali-
cious nodes may record inaccurate or non existent events,
i.e. they may enter wrong assertions into the database K.

Explaining a set of events. Let H ⊆ N be a set of
possible hypotheses. We assume the set H is partitioned
into a subset H+ of hypotheses of validity (e.g. “correct”)
and a set H− of hypotheses of invalidity (e.g. “malicious”,
“benignly faulty”). Let K = {〈E1〉O1 , . . . , 〈En〉On} be a set
of assertions. An explanation for K at node N is a labelling



of each assertion in K with a hypothesis

ExpN (K) = {〈E1〉h1
O1

, . . . , 〈En〉hn
On
}

where hi ∈ H, such that the subset of assertions tagged
with hypotheses of validity is consistent with the model of
the VANET. Formally, let

ExpH
+

N (K) = {〈Ei〉hi
Oi
∈ ExpN (K) | hi ∈ H+}

We have M(ExpH
+

N (K)) = valid. Note that the explana-
tion ExpN (K) is defined with respect to a particular node
N , since different nodes may assign different hypotheses to
various assertions (consider for example that a node is likely
to always consider its own assertions as truthful).

Ordering explanations. The model of the adversary also
specifies an ordering of explanations. This is usually a total
order based on some scoring of the explanations that will
vary depending on the statistical methods used. For exam-
ple, Occam’s razor would score explanations based on their
simplicity.

Addressing inconsistencies. Given a collection of data
K invalid under a model of the VANET M, and an ordered
collection of explanations of K, then either the data is de-
clared invalid (an error is detected) or the errors in K are
corrected by using the H+ labelled assertions of the best
explanation. If there are multiple best explanations, their
H+ labelled assertions can be intersected and a subset of K
corrected.

5. EXAMPLES
To illustrate this security framework, we consider two ex-

amples. The first illustrates how easy it is to detect and
reject erroneous nodes if the collaborating sensor data is
strong, while the second example illustrates the importance
of distinguishability when the vehicles have weaker location
sensor capabilities.

5.1 Observing Precise Location of Nearby
Vehicles

For this first example, we assume that nodes are able to
sense the precise location of all neighbors with which they
can communicate, and that location sensing is bound with
communication, so that a node’s sensed location can be as-
sociated with its public key. The database K consists of
tuples:

K = {〈N1, ~x1〉O1 , 〈N2, ~x2〉O2 , 〈N3, ~x3〉O3 , . . .}, (1)

where the assertion Ai = 〈Ni, ~xi〉Oi can be interpreted as
“node Oi claims to have observed node Ni at location ~xi.”
Under normal operation node Oi will not be able to ob-
serve nodes beyond a fixed radius ρ, in which case ~xi will
have value “unobserved.” (With the multiple communica-
tion pathways assumption we made earlier, those tuples with
~xi “unobserved” can be eliminated from the database and
their values inferred from their absence.) Nodes can make
assertions about themselves, in which case Oi = Ni, and
we introduce the notation L corresponding to these reflex-
ive assertions: 〈Ni, ~xi〉Ni =⇒ L(Ni) = ~xi. The VANET
model M(K) for this example returns valid if the following
two geometric conditions both hold (and invalid otherwise):

1. K contains a reflexive assertion for each node

2. Every non-reflexive assertion 〈Ni, ~xi〉Oi in K agrees
with the reflexive assertion for Ni, that is, we have
~xi = L(Ni) if ‖~xi − L(Oi)‖ ≤ ρ and ~xi = unobserved
otherwise.

If there are malicious nodes then K will not necessarily be
consistent with M. In this example, an explanation at node
N , denoted ExpN (K), consists of labelling each assertion
in K with one of three designations, “truthful,” t ∈ H+,
“malicious,” m ∈ H− or “spoof,” s ∈ H−. Each labelled
tuple,

〈Ni, ~xi〉hi
Oi

hi ∈ H = {t, m, s},
in ExpN (K) must satisfy the following criteria:

1. If Oi = N then hi = t. In other words, the obser-
vations of the node constructing the explanation are
considered truthful.

2. When an observer Oi has been labelled a spoof (hi = s)
then none of the other tuples making assertions about
Oi, such as

〈Nk = Oi, ~xk〉hk
Ok

,

should be labelled t unless ~xk = unobserved.

For convenience we also allow an explanation to include new
tuples labelled “added,” a ∈ H+, with one new tuple allowed
for each reflexive tuple that has been labelled m. The added
tuple will supply a correct location ~x∗i that is consistent with
any other truthful observations of Ni in K:

〈Ni, ~xi〉mNi
=⇒ 〈Ni, ~x

∗
i 〉aNi

The truthful and added assertions in ExpN (K), taken to-
gether, should be consistent with the model of the VANET:

M(ExpH
+

N (K)) = valid.

To complete the model of the adversary for this exam-
ple, we score explanations ExpN according to the number
of distinct observers Oi that receive the malicious label m
on one or more of their tuples. The explanation Exp∗N with
the fewest malicious nodes is considered the simplest, and
therefore the most plausible explanation of the data. If there
are enough observations in K, then the data in Exp∗N (K)
will identify the malicious nodes as well as provide correct
locations for all nodes, both truthful and malicious. (In
some instances there may be several explanations that are
equally likely, in which case it may still be possible to ex-
tract some correct locations from the intersection of these
explanations.)

Note that the model of the adversary for this example
makes no distinction based on the number of malicious as-
sertions by an observer; once one of an observer’s assertions
has been labelled malicious then they might as well all be la-
belled malicious. While it is possible to construct more elab-
orate models that assign some measure to the complexity of
the deception created by a malicious observer (or models
that allow for a few benign errors), this simple model has
the appeal that it restricts the strategies available to the
adversary.

We also note that the ranking of explanations ignores
spoof labels in the explanations, so the better explanations
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Figure 3: Two (of many) possible explanations for
the conflicting observations.

will have more spoof nodes and fewer malicious nodes. How-
ever, the direct observations of truthful nodes (by the second
criteria of the labelling described above) will limit the num-
ber of nodes that can be labelled as spoofs.

If there are only a few malicious nodes then the best expla-
nation (or explanations if several are tied) can be computed
exhaustively as follows: the explanations are computed by
postulating a small number of malicious nodes, labelling all
of the assertions of the postulated malicious nodes as mali-
cious, treating the remaining assertions as arcs in a graph,
beginning a breadth first search at N , traversing arcs from
observer Oi to node Ni as long as Ni is not already labelled
m, and labelling nodes that are reached this way as truth-
ful. All unreached nodes are labelled as spoofs. Not all of
these labellings will be consistent with the model M, but
by searching for fewer malicious nodes first, the algorithm
can terminate when it has found one or more explanations
of the same size that pass the consistency test.

Figure 2 shows the attempt of a single malicious node to
create the illusion that it is at a nearby location. The mali-
cious node has attempted to increase the evidence for its il-
lusionary location by generating several spoof nodes, shown
as squares, to support its illusion. The blue arrows show
the observations appearing in the shared database, and the
dashed arrows show some missing observations that will cre-
ate geometric conflicts in the model, and thereby expose the
attack. Figure 3 shows two explanations for the conflicts.
Note that while the malicious node attempted to bias the
explanations by adding spoof nodes, this particular model
of adversarial attack, where multiple real distinct attack-
ers are deemed less likely than multiple spoof attackers, is
able to choose the first (correct) explanation ahead of the
second because it has fewer nodes labelled malicious. How-
ever, notice that the ability to find the correct explanation
is dependent on the density of the graph.

5.2 Observing the Range of Nearby Vehicles
As a contrasting example, we consider the case in which

nodes are only able to detect distances to their neighboring
nodes. A broad class of weaker location sensor capabilities
can be captured by modifying the assertions in the database
to include a region Ri rather than a single point, that is,
Ai = 〈Ni,Ri〉Oi . The observer Oi asserts that Ni is within
region Ri, which might be a wedge or circle centered at Oi

depending on the location sensing technology used. Simi-
larly, the geometric test is generalized to check L(Ni) ∈ Ri.
It is less straightforward to generalize the adversarial model,
the explanations, and the parsimony algorithm; we will illus-
trate these challenges using a simple range test (e.g. based
on transmission timing) where Ri is a circle of fixed radius
ρ centered at L(Oi).

Figure 4: A partition of the plane based on fixed
range tests.

In this example the principle challenge is to generate an
explanation that may involve new locations for malicious
nodes whose actual locations are not present anywhere in
the data K. As above, we allow for missing data to be
added to the explanation. Unlike above, malicious nodes
will not necessarily have a location recorded in the database
K. Nevertheless, we will add one new entry for each mali-
cious node: 〈Ni,Si〉aNi

, where Si is a possibly non-circular
region where Ni might actually be located. Figure 4 shows
a partition of the plane by circles radius ρ around points
in K. Regions in this partition have unique but constant
range properties with respect to the nodes, and so would be
candidates for Si.

Here again we consider the explanation with the fewest
malicious nodes (or equivalently the fewest added assertions)
to be the best explanation. Unlike the previous example,
malicious nodes in this example can generate spoofs that are
observed by truthful nodes, as long as the malicious nodes
are within range of the truthful observer. This phenomena
can also be added to the explanation by introducing a new
“illusion” label: i ∈ H−. The i label can be applied to the
observations of nodes whose observations would otherwise
be considered truthful, t, provided that there is a malicious
node nearby:

〈Ni,Ri〉iOi
=⇒ ∃k : 〈Nk,Sk〉aNk

∧ (Sk ⊂ Ri)

We can search for the best explanation by systematically
postulating small numbers of malicious nodes located in re-
gions Si of the partition shown in Figure 4, and adding
entries for these postulated malicious nodes, for example,
〈Nk,Sk〉aNk

. The rest of the data in K is labelled by breadth
first search from N , treating the assertions in K as arcs
and traversing from observer Oi to node Ni. When consid-
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Figure 5: A malicious node M can generate an al-
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assertions in the database

ering the arc corresponding to assertion 〈Ni,Ri〉Oi , if the
observer is within range of a postulated malicious node Nk,
with L(Nk) = Sk and Sk ⊂ Ri, then the assertion is labelled
as an illusion, and the arc is not traversed. The assertions
for all arcs that are successfully traversed are labelled truth-
ful, and all arcs that are not reached are labelled as spoofs.
As with the previous example, the explanations passing the
geometry test with the fewest malicious nodes are used to
correct the data.

In contrast to the earlier example of Section 5.1, where
every observed node was distinct, this example is at the
opposite extreme—the location sensing is so imprecise that
every observation could be generated by a single malicious
node near the observer. (An example of a single malicious
node generating a fictitious alternate world is shown in Fig-
ure 5.) In fact, some additions must be made to the model
or the parsimony approach will find an easy way to explain
any inconsistencies in the data by postulating a single ma-
licious node next to the observer and postulating that all
other nodes are spoofs! This is clearly not the most plausi-
ble explanation—it is unlikely that the neighborhood would
be devoid of real nodes. We could simply introduce a “tie
breaking” into the ordering relation: choosing the explana-
tion with the fewest malicious nodes and among those ex-
planations choosing the explanation with the most truthful
nodes. However, this would limit the parsimony approach
to solutions with one malicious node. A more Bayesian ver-
sion of this approach is to soften the VANET model so that
it returns probabilities based on the density of nodes (un-
usually sparse or dense patterns of neighboring nodes would
be assigned lower probabilities), and then incorporate these
probabilities in the ordering of explanations.

Improving the VANET model alone does not resolve all
difficulties with this kind of attack. Figure 5 shows an ex-
ample where an attacker positioned near node N is able to
create a complete alternate view that may fit the VANET
model very well. This is not the most serious attack: it is
easily detected, and it requires a malicious node near each
node attacked. Moreover, in the world of VANETs, where
nodes are mobile, this attack requires a malicious node to
move with an attacked node to maintain an illusion over
time. Clearly this is a costly attack, and the cost can be
incorporated into the ordering relation to further focus the
parsimony approach on the most likely explanations.

Finally, we note that this approach is generally dependent
on topology, that is, the ability to detect and correct attacks
will vary based on the locations of all the nodes. However
there is a more serious dependency on topology in this ex-
ample where location sensing is not able to provide a precise
fix (even in combination with observations of neighbors); in
this example there is always a possibility for nodes to slightly

spoof their locations and remain undetected. Figure 4 il-
lustrates the slack in this example—any node shown could
vary their reported location within their enclosing partition
region. Fortunately the density of partition regions grows as
O(ρ2d2), where d is the density of nodes, and so in denser
regions the slight spoof attack is limited.

In both of the above examples, we have sketched algo-
rithms that are capable of identifying the best explanations
based on enumerating a small subset of all explanations.
The computational aspects of this problem need further in-
vestigation, however, these examples already illustrate some
computational challenges. In most cases finding the most
likely explanation will be intractable, while at the same time
there may be a smaller, polynomial, number of very likely
explanations. In the above examples the problem becomes
tractable when we assume a small constant limit on the num-
ber of malicious nodes (reasonable in a dynamic network).
The introduction of stochastic information in the models, as
indicated in the second example, will likely make the use of
search heuristics and branch-and-bound techniques effective
in exploring the most likely explanations. Finally we note
that the task of finding the best explanation can be par-
allelized among the truthful nodes by having nodes share
“hints” (in the form of candidate explanations) with their
neighbors; when verified, these hints would accelerate the
otherwise redundant branch-bound-search of the individual
nodes.

6. CONCLUSION
We have proposed a general approach to detecting and

correcting errors that have been maliciously introduced into
data in a VANET. The approach relies on using sensor data,
collected by nodes in the VANET, shared with immediate
neighbors, and propagated to a neighboring region. The
sensor data provides redundant information, allowing each
individual node to process the sensor data and detect or re-
move malicious information. Individual nodes use a model
of the VANET to check the validity of the sensor data, and
when inconsistencies arise, an adversarial model is used to
search for explanations of the errors, ranking explanations
using a parsimony approach, and using the best explanation
(or explanations) to correct the consequences of the attack.
The VANET model, adversarial model, and the parsimony
algorithm all depend on the nature of the sensor data. Two
examples illustrate the variety of possibilities and the effec-
tiveness of the approach.

Acknowledgements
The authors are grateful to Dirk Balfanz, Qingfeng Huang,
Julia Liu and Diana Smetters for helpful comments on an
earlier draft of this paper.

7. REFERENCES
[1] S. Bhargava and D. P. Agrawal. Security

Enhancements in AODV Protocol for Wireless Ad Hoc
Networks. In the Proceedings of the 2001 IEEE
Vehicular Technology Conference.

[2] D. Balfanz, D. K. Smetters, P. Stewart and H. C.
Wong. Talking to Strangers: Authentication in Ad Hoc
Wireless Networks. In the Proceedings of the network
and distributed system security symposium (NDSS),
2002.



[3] S. Brands and D. Chaum. Distance-Bounding
Protocols. In Theory and Application of Cryptographic
Techniques, pp. 344–359, 1993.

[4] D. Denning and P. MacDoran. Location-Based
Authentication: Grounding Cyberspace for Better
Security. In Computer Fraud and Security, February
1996.

[5] J. Douceur. The Sybil Attack. In the Proceedings of the
1st International Peer To Peer Systems Workshop
(IPTPS 2002), March 2002.

[6] L. Hu and D. Evans. Using Directional Antennas to
Prevent Wormhole Attacks. In Proceedings of the
network and distributed system security symposium
(NDSS), 2004.

[7] Y. Hu, A. Perrig and D. Johnson. Efficient security
Mechanisms for Routing Protocols. In the Proceedings
of the network and distributed system security
symposium (NDSS), 2003.

[8] Y. Hu, A. Perrig and D. Johnson. Packet Leashes: A
Defense against Wormhole Attacks in Wireless Ad Hoc
Networks. In INFOCOM 2003.

[9] W. Júnior, T. Figueiredo and H. Wong. Malicious node
detection in wireless sensor networks. In Proceedings of
the 18th International Parallel and Distributed
Processing Symposium (IPDPS 2004).

[10] C. Karlof and D. Wagner. Secure routing in wireless
sensor networks: Attacks and countermeasures. In
First IEEE International Workshop on Sensor Network
Protocols and Applications, pp. 113-127. May, 2003.

[11] S. Marti, T. Giuli, K. Lai and M. Baker. Mitigating
Routing Misbehavior in Ad Hoc Networks. In
Proceedings of MOBICOM 2000.

[12] J. Newsome, E. Shi, D. Song and A. Perrig. The Sybil
Attack in Sensor Networks: Analysis and Defenses. In
Proc. of the Third International Symposium on
Information Processing in Sensor Networks (IPSN
2004).

[13] N. Sastry, U. Shankar and D. Wagner. Secure
Verification of Location Claims. In ACM Workshop on
Wireless Security (WiSe 2003).

[14] B. Waters and E. Felten. Secure, Private Proofs of
Location. Princeton University Computer Science
Technical Report, TR-667-03.


